
LABORATORY FOR MASSACHUSETTSL INSTITTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-490

DISTRIBUTED ALGORITHM
SIMULATION USING

INPUT/OUTPUT AUTOMATA

Kenneth J. Goldman

September 1990.

545 T'E;CIINOIA)GY SQUARI, CAN1RII)NE, NI1ASS:.Cn sll.S 0213Q

UnclIass ifie
SECURITY CiASSFCgON OF T7iS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECA17TY CLASSiFiC.4TI0N 1b RESTRICTIYE MARKINGS

Un clJass ifije d ____________________________

2a. SECURITY C SSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFCATION / DOWNGRADING SCHIEDULEisuim.rd

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR 490 _ _______ N00014-83-K-0l25
6a. NAME OF PERFORMING ORGANIZATION 6o OFFiCE SYMBOL 7a. NAME OF MONITORING ORGANIZA7ION

MIT Lab for Comuer Science j (if applicable) Office of Naval .Research/Dept. of Navy

6c- ADDRESS (Crty, State, and ZIP Code) 7b. ADDRESS (CFry, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02i39 rigonVA221

8a. NAME OF ;UND:NG ,SPONSORING 8b. OFF;CE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicaoie)
DARPA"' DODI

ac. ADDRESS (City, State, ania ZIP Code) 10. SOURCE 0;r UNDING NUMBERS
PROGRAM PROIF7-, -ASK fWORK UNIT1400 W;ilscn Blvd. ELEMENT NO NO. NO ACCESSION NO.

1. TITLE (Inciuce Security Ciassificationi

Distributed Algorithm~ Simulation Using In?ut/Output Automata

2. ERONL A71O~S) Kenneth J. GoldmanI

3.. TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) JiS PAGE COUNT

*6. SUPPLEMENTARY NQTA71.0%

.7COSA7; CCODES 18. SUBjECT TERMS (Continue on reverse if necessary and identify oy block numoer)
FIEL.D I GROUP si SUGPOUP Distributed systems, distributed algorithms, formal model,

I 1/0 automata, programming languages) simulation, program visua1-
I 7nt"In-r q1Vo-1-h jA P1cnPM~ri nnrrpr~i-,PC pTrrnfq &ai.dmci iory,

'9 ABSTRACT (Continue on reverse if necessary and identify 'cy block number)

Abstract: We present the Spectrum Simulation System, a new research tool for the design

and study Of distributed algorithms. Based on the formal Input/Output automaton model

of Lynch and Tuttle. Spectrum allows one to express distributed algorithms as collections of

mits integration of algorithm specification, design, debugging, analysis, and proof of correctness

within a single formal framework that is natural for describing distributed algorithms. Spectrum

provides a language for expressing algorithms as 1/0 automata, a simulator for generating algo-

rithm executions, and a graphics interface for constructing systems of automata and observing

their executions.

20 DtSTRiBLITIONAVAILABtLITY OF ABSTRACT 21. AB STRACT SECURiTY CLASSIFICATiON
[3 UNCLASSIFIED,UNLIMITED 0 SAME AS RPT [3 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) I22c, OFF:CE SYMBOL
Carol Nicolcra (617) 253-5894

DO FORM 1473, 84 VAR 83 APR ecdtiom may oe used until exhiausted. SECjPITY C'.ASSiF;CAiONOF THIS5 PAGE
All other editions are Ooiete

90 if') ~~~~ ,. ~Unclassi:. r r~qOta 1517

18. mutual exclusion, linearizability, superposition, global snapshot, multicast,
synchronization, distributed simulation.

19. We show that the properties of the I/O automaton model provide a solid foundation for

algorithm development tools. For example, using I/O automaton composition, Spectrum users

may define composed types hierarchically, study simulations at varying levels of detail, and

create specialized debugging and analysis devices. These devices, called spectators, are written

in the Spectrum language just as any other system component, and can monitor algorithm

executions for correctness and performance without interfering with the algorithm.

The system is designed to support experimentation with algorithms. For example, the

system separates algorithms from the system configurations in which they are to run, allowing

users to vary them independently. Also, the message system may be modeled explicitly as an

automaton. pernitting users to study algorithms under different communications assumptions

simply by substituting one automaton for another.

Motivated by a desire to broaden the class of algorithms that may be studied using Spectrum.

we propose two extensions to the I/O automaton model. First, we extend the I/O automaton

model to allow modelling of shared memory systems, as well as systems that include both shared

memory and message passing communication. This extension supports description, verification.

and analysis of shared memory systems. As an example, Dijkstra's classical shared memory

mutual exclusion algorithm is presented and proved correct. In addition, we illustrate how

the extended model provides a unified formal framework in which shared memory systems and

message passing systems may be related. Second, we extend the I/O automaton model with

a superposition operator that permits system modules to be combined in layers so that higher

layers may observe (but not modify) the variables of lower layers. We show that superposition

does not affect the set of executions of the underlying module, thus preserving all properties

of that module. A formal specification mechanism is presented that allows the set of correct

behaviors of the higher level module to be expressed in terms of the states of the underlying

module. As an illustration of the superposition extension, the global snapshot algorithm of

Chandy and Lamport is presented with a complete proof of correctness. For both of these

model extensions, we propose corresponding extensions to the simulation system.

The final con,-;bution of this thesis is a distributed algorithm that may be used to achieve

distributed simulation of agurithms written as I/O automata. The algorithm solves a new

synchronization problem. logically synchronous multicast, that captures the synchronization

semantics of the I/O automaton mode!.

Distributed Algorithm Simulation

Using Input/Output Automata

by

Kenneth J. Goldman

S.M. ELCS, Massachusetts Institute of Technology (1987)
Sc.B. Computer Science, Brown University (1984)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

D o c t o r o f P h i l o s o p h y eDs.i_Accession For

at the DTIC TABUno03nnounced 0]
Just~tfcatio

MASSACHUSETTS INSTITUTE OF TECHNOLOG -- on
By_---------Distribution/

September 1990 Availability CodesAvail and/or
Dist Special

© Massachusetts Institute of Technology 1990 L
Signature of A uthor ..

Department of Electrical Engineering and Computer Science
July 16, 1990

C ertified by ..
Nancy A. Lynch

Professor
Thesis Supervisor

A ccepted by ...
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

3
Distributed Algorithm Simulation

Using Input/Output Automata

by

Kenneth J. Goldman

Submitted to the Department of

Electrical Engineering and Computer Science on July 16, 1990

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract: *k present~the Spectrum Simulation System. a new research tool for the design

and study of distributed algorithms. Based on the formal Input/Output automaton model

of Lynch and Tuttle, Spectrum allows one to express distributed algorithms as collections of

I/O automata and simulate them directly in terms of the semantics of that model. This per-

mits integration of algorithm specification, design, debugging, analysis, and proof of correctness

within a single formal framework that is natural for describing distributed algorithms. Spectrum

provides a language for expressing algorithms as I/O automata, a simulator for generating algo-

rithm executions, and a graphics interface for constructing systems of automata and observing

their executions.

~--'W showi that the properties of the I/O automaton model provide a solid foundation for

algorithm development tools. For example, using I/O automaton composition, Spectrum users

may define composed types hierarchically, study simulations at varying levels of detail, and

create specialized debugging and analysis devices. These devices, called spectators, are written

in the Spectrum language just as any other system component, and can monitor algorithm

executions for correctness and performance without interfering with the algorithm. (. -

The system is designed to support experimentation with algorithms. For example, the

system separates algorithms from the system configurations in which they are to run, allowing

users to vary them independently. Also, the message system may be modeled explicitly as an

automaton, permitting users to study algorithms under different communications assumptions

simply by substituting one automaton for another.

4

Motivated by a desire tc, broaden the class of algorithms that may be studied using Spectrum,

we propose two extensions to the I/O automaton model. First, we extend the I/O automaton

model to allow modelling of shared memory systems, as well as systems that include both shared

memory and message passing communication. This extension supports description, verification,

and analysis of shared memory systems. As an example, Dijkstra's classical shared memory

mutual exclusion algorithm is presented and proved correct. In addition, we illustrate how

the extended model provides a unified formal framework in which shared memory systems and

message passing systems may be related. Second, we extend the I/O automaton model with

a superposition operator that permits system modules to be combined in layers so that higher

layers may observe (but not modify) the variables of lower layers. We show that superposition

does not affect the set of executions of the underlying module, thus preserving all properties

of that module. A formal specification mechanism is presented that allows the set of correct

behaviors of the higher level module to be expressed in terms of the states of the underlying

module. As an illustration of the superposition extension, the global snapshot algorithm of

Chandy and Lamport is presented with a complete proof of correctness. For both of these

model extensions, we propose corresponding extensions to the simulation system.

The final contribution of this thesis is a distributed algorithm that may be used to achieve

distributed simulation of algorithms written as I/O automata. The algorithm solves a new

synchronization problem, logically synchronous multicast, that captures the synchronization

semantics of the I/O automaton model.

Keywords: Distributed systems, distributed algorithms, formal models, I/O automata, pro-

gramming languages, simulation, program visualization, algorithm development, correctness

proofs, shared memory, mutual exclusion, linearizability, superposition, global snapshot, mul-

ticast, synchronization, distributed simulation.

Thesis supervisor: Nancy A. Lynch

Title: Professor

5

Acknowledgments

I could not have asked for a better research advisor than Nancy Lynch. She has been a

constant source of research ideas, and has provided direction and encouragement at all the right

moments. Nancy is a co-author of Chapter 7, and has been involved with the details of many of

the other chapters. I also thank the other members of my thesis committee, Baruch Awerbuch

and Bill Weihl, whose comments have contributed to the quality of this thesis.

The work in Chapter 7 on proofs for shared object systems is joint work with Kathy Yelick.

I also thank Kathy for her careful reading of the remainder of that chapter.

Many of the past and present members of the Theory of Distributed Systems research group

have contributed to this thesis, and all have made this group an exciting place to do research.

I thank Christopher Colby for implementing the Spectrum user interface, and for his patience

when I would occasionally decide to change the specification. I thank John Leo, Stephen

Ponzio. and Mini Gupta for their comments on using the Spectrum Simulation System. In

addition, I thank thank Alan Fekete for several discussions during the early part of this work,

Jennifer Welch and Mark Tuttle for their detailed comments on both the technical details and

the presentation of the logically synchronous multicast algorithm, and Hagit Attiya for several

technical discussions. Also, I thank Anna Wiseman for taking care of all that paperwork.

I am grateful to Tom Miller and Paris Kanellakis, who introduced me to computer science

research and were influential in my decision to attend graduate school.

I thank my parents, Lester and Judy, for all the love and support they have given me during

the past 27 years. I thank the rest of my family for their moral support, and for not asking

too many times when I would graduate. In particular, I thank my aunt and uncle, Phyllis and

Alfred Schneider, for being a second family to me during my stay in the Boston area. I thank

my in-laws, Robert and Marilyn Goldwasser, for their frequent phone calls and visits, for their

words of encouragement, and especially for their daughter.

This thesis would not have been possible without the help of my wife, Sally. I thank her

for emotional and technical support, for taking on extra responsibilities whenever I faced a

deadline, and for never doubting once that we would finish at the same time. Finally, I thank

our son, Mark, for providing energy, excitement, and humor whenever it was needed most.

6

This research was supported in part by the National Science Foundation under Grant CCR-

86-11442, by the Office of Naval Research under Contract N00014-85-K-0168, by the Defense

Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125 and Contract

N00014-89-J-1988, and by an Office of Naval Research graduate fellowship.

Contents

1 Introduction 13

1.1 Distributed Algorithms 15

1.2 Design Goals 17

1.3 Thesis Overview 21

2 The Model 23

2.1 I/O Automata 23

2.2 Composition 25

2.3 Fairness 26

2.4 Problem Specification 27

2.5 Alternative Models 28

2.5.1 CSP .. 28

2.5.2 UNITY ... 29

2.5.3 Statecharts 30

2.6 Summary 31

3 The Spectrum Language 33

3.1 Theoretical Foundations 35

3.2 A Separation of Concerns 38

3.3 Language Constructs 39

3.3.1 Data Types 39

3.3.2 Action Types 42

3.3.3 Automaton Types 43

7

8 CONTEXTS

3.4 Example... 49

3.5 Support for Verification. Analysis, and Visualization 51

3.5.1 State Invariants

3.5.2 Spectators. 52

3.5.3 Pseudovariables 54

3.6 Summary. 5

4 The Spectrum Simulator 59

4.1 The Loader. 60

4.2 The Interpreter 62

4.3 The Execution Loop. 62

4.4 The Scheduler. 65

4.5 Summary. 66

5 The Spectrum User Interface 69

5.1 Overview of the Spectrum Interface. 70

5.2 Configure Mode 71

5.2.1 The Types Menu. 71

3.2. 2 The Edit Menu. 72

5.2.3 Automaton Instances 72

5.2.4 Configuration Edges. 73

5.2.5 Creating Composed Types........

5.2.6 Summary Mappings. 74

5.2.7 Undo and Redo. 74

5.2.8 Saving and Loading Files. 75

5.2.9 Data Structures 75

5.3 Simulate Mode. 76

5.3.1 The Simulate Menu. 76

5.3.2 The Running Simulation. 77

5.3.3 State Windows. 78

5.3.4 Execution Rollback 78

CONTENTS 9

5.3.5 Error Messages During Simulation 78

5.3.6 Trace Files 79

5.4 Summary 79

6 System Evaluation 81

6.1 Comparisons with Related Systems 81

6.1.1 Occam ... 82

6.1.2 UNITY. 83

6.1.3 Statemate 85

6.1.4 DEVS 86

6.2 Design Goals Revisited 87

6.2.1 Spectrum and the [/0 Automaton Model 87

6.2.2 Expressive Power 89

6.2.3 Experimentation 91

6.2.4 Economy and Integration 94

6.3 Summary 95

7 Shared Memory 97

7.1 Shared Memory Definitions 101

7.1.1 Variables 101

7.1.2 Shared Memory Actions 102

7.1.3 Shared Memory Automata 103

7.1.4 Augmentation and Augmented-Composition 106

7.1.5 The Closeout Operator 110

7.1.6 Closeout for behaviors 112

7.1.7 Discussion 114

7.2 Example: Dijkstra's mutual exclusion algorithm 115

7.2.1 The Mutual Exclusion Problem 115

7.2.2 Dijkstra's Mutual Exclusion Algorithm 117

7.2.3 Safety Proof .. 120

7.2.4 Progress Proof 123

10 CONTENTS

7.3 Proofs for Shared Object Systems 129

7.3.1 Invocation-Response Systems 131

7.3.2 Simulating Atomic Access Systems with IR Systems 134

7.4 Supporting Shared Memory in Spectrum 145

7.5 Summary 146

8 Superposition 149

8.1 Superposition Extensions 151

8.1.1 Unconstrained Automata 152

8.1.2 Superposition .. 155

8.1.3 Partial Execution Modules 162

8.1.4 Superposition for Partial Executions 163

8.2 Example: Global Snapshot 164

8.2.1 Problem Specification 164

8.2.2 The Algorithm 170

8.2.3 Proof of Correctness 176

8.3 Supporting Superposition in Spectrum 178

8.4 Summary 181

9 Distributed Simulation 183

9.1 The Problem 186

9.1.1 The Architecture 186

9.1.2 Correctness 189

9.2 The Algorithm 193

9.3 Proof of Correctness 198

9.3.1 Safety Proof .. 199

9.3.2 Liveness Proof 209

9.4 Complexity Analysis 213

9.4.1 Message Complexity 214

9.4.2 Time Complexity 214

9.4.3 Possible Optimizations 218

CONTEXTS 11

9.5 Summary and Discussion..................................... 219

10 Conclusion 223

A Language Syntax 227

B Functions 231

B. 1 Generic 231

B.2 Integers.232

8.3 Booleans. 232

B.4 Strings 233

B.5 Configuration Data233

8.6 Sets 234

13.7 Mvultisets.235

B.8 Sequences 236

B.9 Mappings 237

B.10 Conditionals 237

Bibliography 239

12 CONTENTS

Chapter 1

Introduction

We are experiencing a dramatic increase in the use of computer communication in both our

professional and personal lives. A global electronic infrastructure is fast becoming a reality, and

is bringing with it sweeping changes in the way people communicate, do business, and conduct

their daily lives. Electronic communication for mail, information exchange, and financial and

consumer services are becoming commonplace. And the continued proliferation of distributed

computing will undoubtedly inspire new uses for the technology. These applications will bring

increased demands for software performance and reliability, as well as an abundance of new

software for distributed computing.

Distributed algorithms will be at the heart of this new software. Distributed algorithms are

the protocols by which the computers in a distributed system cooperate towards the solution

of a problem. Unlike sequehtial algorithms, used to solve problems on a single processor,

distributed algorithms must cope with arbitrary communication delays and both processor and

communication failures. The fact that communication delays are unpredictable means that

distriluted algorithms must also cope with arbitrary interleaving of processor steps. Since a

given program's computation may unfold nondeterministically, designing and reasoning about

distributed algorithms is inherently difficult. Therefore, researchers have turned to formal

models of distributed systems in order to reason about their algorithms. For example, the

I/O automaton model of Lynch and Tuttle [47, 48] is particularly well suited for the study

of distributed algorithms; it allows one to state natural correctness conditions, give precise

algorithm descriptions, and construct careful correctness proofs.

13

14 CHAPTER 1. INTRODUCTION

We claim that formal models are important not only as a means to analyzing and proving th,-

correctness of distributed algorithms, but also as the basis of software tools for designing better

algorithms. The aim of this thesis is to demonstrate how distributed algorithm specification,

design, debugging, analysis, and proof of correctness may be integrated within a single formal

framework that is natural for describing a wide range of distributed algorithms. Such integration

not only saves one from translation between different models and languages, but also allows facts

discovered during simulation and debugging to be more easily incorporated into the correctness

proof, and allows properties used in the proof to be checked mechanically during simulation.

We present the Spectrum Simulation System, a new research tool for the design and study of

distributed algorithms. Spectrum consists of a programming language and simulator based on

the 1/0 Automaton model. Users express distributed algorithms as collections of I/O automata

and simulate them directly, in a way that is faithful to the semantics of the formal model. A

graphical user interface is provided for constructing systems of automata and animating their

executions. In presenting the system, we describe how the salient features of the I/O automaton

model provide a solid foundation for distributed algorithm development tools. For example,

using I/O automaton composition, Spectrum users may define composed types hierarchically,

study simulations at varying levels of detail, and create specialized debugging and analysis

devices.

The Spectrum implementation is faithful to the original I/O automaton model, as presented

by Lynch and Tuttle. This model is particularly well suited for describing collections of asyn-

chronous processes that communicate through message passing. However, not all distributed

algorithms are best described using private local state and message-passing communication. It

is sometimes convenient to describe a distributed algorithm as a collection of processes that

communicate through shared variables, or as a collection of system layers, arranged so that each

layer makes use of the internal states of lower layers. With a view towards broadening the class

of algorithms to which our simulation system is applicable, we present two extensions of the

I/O automaton model. The first extension permits automata to communicate through atomic

accesses to shared variables. The second extension, called superposition, allows programs to be

constructed in layers, such that higher layers may observe the internal states of lower layers.

We propose new language constructs and simulation system enhancements to support each of

1.1. DISTRIBUTED ALGORITHMS 15

these model extensions.

Another contribution of this thesis is the formulation of a general problem called logically

synchronous multicast and a highly concurrent protocol to solve it. We show how this protocol

could be used in the Spectrum Simulation System to achieve distributed simulation of algorithms

expressed as I/O automata.

We now turn to a brief introduction to distributed algorithms. Following this. we present

the design goals for the Spectrum Simulation System, and draw distinctions between simulation

systems and other sorts of software development tools. The chapter concludes with an overvi,_w

of the thesis.

1.1 Distributed Algorithms

A distributed system consists of a collection of geographically separated computers linked to-

gether by a network. In general, the network topology, the arrangement of communication links

between processors, may be arbitrary. Processes, program threads running on the computers,

may communicate with each other by sending messages over the network, but do not have any

other means of communication, such as a shared memory. Processes are autonomous, meaning

that they determine when to send messages to other processes. That is, a process cannot pre-

vent another process from sending a message. Processes do not have synchronized clocks, and

their instruction execution rates may differ. This implies that processes are asynchronous;, their

steps may be arbitrarily interleaved. Network communication is also asynchronous, meaning

that the acts of sending and receiving a message are separated (often arbitrarily) in time.

Like any computer system, distributed systems are prone to failures. However, unlike cen-

tralized systems, portions of a distributed system may continue to be useful while other portions

are "down." We classify the types of failures that may occur in a distributed system into pro-

cess failures and communication failures. Process failures range from simple stopping faults

(crashes) to malicious faults, in which faulty processors attempt to corrupt the computation of

the rest of the system by sending incorrect or conflicting messages. If we assume that a com-

munication link is supposed to deliver each message exactly once and in the order sent, then

communication failures may involve losing messages, reordering messages, delivering messages

that were never sent, or delivering messages multiple times.

16 CHAPTER 1. INTRODUCTION

In order to coordinate the activities of processes in a distributed system, it is necessary to

have agreed-upon protocols. These protocols are called distributed algorithms. Typical problems

solved by distributed algorithms include:

" leader election: Choose exactly one distinguished "leader" process (to coordinate some

computation).

" mutual exclusion: Grant permission for the use of a shared resource (e.g., a printer) in

response to user requests so that no two users have permission simultaneously.

* global snapshot: Construct a recent consistent picture of the state of the entire system (as

in an audit of a distributed banking system).

Distributed algorithms are usually designed with particular assumptions about the under-

lying system in mind. For example, one might assume that the only process failures are crash

failures and that all messages sent eventually arrive. In addition to failure assumptions, one

might make assumptions about the network topology or about the existence of unique process

identifiers. The set of assumptions makes a great impact on the algorithmic solution. It is often

interesting to consider what happens when an algorithm's assumptions are violated. For exam-

ple, consider a distributed algorithm designed with the assumption that messages are delivered

in order. Depending on the particular algorithm, delivering messages out of order might cause

the algorithm to produce an incorrect result, might have no effect whatsoever, or might cause

the algorithn. to produce a correct result but with degraded (or superior!) performance.

The particular combination of process and communication failures that an algorithm must

tolerate forms part of the problem specification. A specification is usually presented in terms of

the input/output relationship between the algorithm and its environment. Since an algorithm

has no control over its environment, a problem specification usually says that an algorithm

will satisfy certain safety and liveness conditions, provided that its inputs are well-formed.

The safety conditions essentially say that the algorithm never does anything "wrong", and

the liveness (progress) properties essentially say that the algorithm eventually does something

"right". An algorithm is said to be correct if it satisfies both the safety and liveness conditions

(whenever its inputs from the environment are well-formed).

1.2. DESIGN GOALS 17

We need formal models to help overcome the inherent difficulty of designing distributed

algorithms that stems from the arbitrary interleaving of process steps. Informal arguments

and software testing are inadequate substitutes for formal methods, since anything short of a

complete proof is likely to miss "bad" executions - executions in which the particular choice of

process step interleaving leads to the violation of safety or liveness requirements. Formal models.

such as the I/O automaton model. are useful for stating problem specifications, describing

algorithms precisely, and constructing careful proofs of correctness. However, formal proofs of

correctness are often long, hard, and tedious. If an algorithm is incorrect, much effort can be

wasted in attempting to prove its correctness. Testing can help one to discover many errors

in algorithms quickly and easily, before delving into a correctness proof. Furthermore, simply

constructing a correctness proof for an algorithm may not reveal enough intuition into how the

algorithm works in order to lead to improvements in the algorithm. For these reasons, it is

important to have research tools for simulating distributed algorithms.

Simulation allows one to test and debug algorithms, and can reveal intuition that is helpful

in understanding algorithms and constructing correctness proofs for them. In conjunction with

appropriate graphical visualization techniques, simulation facilitates the study of algorithm

performance under varying conditions, something not easily done in the context of a proof. But

because successful testing alone is not sufficient cause to believe that an algorithm is correct, one

must still construct a correctness proof as part of the algorithm development cycle. Therefore,

it is important that the semantics of the simulation language be consistent with the formal

model in which the proof is to be constructed. In addition, using an appropriate formal model

as the basis of a simulation tool leaves open the possibility of integrating the entire algorithm

development process: specification, design, debugging, analysis, and proof of correctness. The

purpose of this thesis is to demonstrate how this can be achieved. We now elaborate on the

design philosophy behind the Spectrum Simulation System.

1.2 Design Goals

We have said that the aim of this work is to construct a research tool for the design and

study of distributed algorithms that integrates theoretical modelling techniques with algorithm

simulation, visualization, and testing. In this section, we become more specific about this

1s CHAPTER 1. INTRODUCTION

objective. In designing any software tool, it is important to formulate and adhere to a set of

design principles. The philc.ophy behind the Spectrum simulation system is described by the

design principles that follow. We argue generally for the importance of each principle, and

describe lower-level design goals that follow naturally from them.

The design must be faithful to a formal model. Since our aim is to integrate theoret-

ical modelling techniques with algorithm simulation, the simulation language and its semantics

(as well as the implementation of the simulator) must remain faithful to the formal model. Any

departure from the formal model jeopardizes effective integration of the two. For example, it

is only possible to mechanically check executions of an algorithm against properties stated in

the proof if the semantics of the simulation match the semantics of the model. By remaining

faithful to a theoretical model, we also benefit from having a well-defined semantics on which

to base the language and implementation. Of course, we must choose a sufficiently simple

model so that the resulting language mechanisms encourage writing straightforward algorithm

descriptions, and so that the resulting simulations are easily comprehended. This brings us to

the next design principle.

The language should be natural for expressing a large class of distributed algo-

rithms. This design principle has as much to do with the choice of a formal model on which

the language is based, as it has to do with the design of particular programming language

constructs. The inherent properties of distributed algorithms and systems lead us to the fol-

lowing specific requirements. The model and language should reflect the fact that processes in

distributed systems generate outputs autonomously and may receive inputs at arbitrary times.

Also, since distributed algorithms can be designed with many different communication assump-

tions, the system should provide support for varying these assumptions. Therefore, one should

be able to model communication mechanisms explicitly. Many distributed algorithms make

use of unbounded state, such as message counters or history information. In order not to rule

out such algorithms, we require that the language allow processes to have infinite state sets

(in principle). Finally, we require that the language have built-in data types and control flow

mechanisms that are convenient for describing distributed algorithms.

The language and simulation system should encourage experimentation. Often,

a researcher does not know exactly where to look for new insights, but discovers them through

1.2. DESIGN GOALS 19

a process of exploration and experimentation. It is important that a research tool facilitate this

process. This principle implies a number of specific design goals:

1. The write/simulate/modify cycle should be short. That is, the length of time required to

modify an algorithm and start the simulation should be small.

2. The language should provide mechanisms for modularity, so that algorithm components

may be studied individually or replaced with other components. This modularity should

have a hierarchical structure, so that simulations can be studied at different levels of detail.

In addition, the system should support writing user-defined debugging and analysis tools

as separate modules.

3. Logically inaependent concerns should be orthogonal. It should be possible to modify

each of the following aspects of a simulation independently: the algorithm being studied,

the system configuration, the control of visualization, and the mechanisms for debugging

and analysis. Extraneous information for the configuration, visualization, and debugging

should not clutter up the algorithm code or interfere with its execution.

4. User effort should be focused on experimenting with algorithms rather than finding obscure

program errors. This means providing a statically type-checked language with a rich set

of built-in data types.

5. Flexible mechanisms should be provided for controlling and studying executions. For

example, the system should provide automatic detection of invariant violations, flexible

and simple graphical mechanisms for configuring systems and controlling visualization, a

choice of scheduling options, and the ability to go backward/forward in an execution and

to generate a trace file.

In general, support for experimentation means that it should be easy to modify the algorithm

and manipulate the simulation.

Finally, it is important to design for economy and integration. In general, a system is

easier to build, learn, and use when a small set of tools provide all the necessary functionality.

The main goal here is to use the same language mechanisms for writing programs, creating

20 CHAPTER]. INTRODUCTION

debugging tools, specifying invariants, and setting up visualization. In addition, a single graph-

ical interface should be used for both constructing the system configuration and controlling the

simulation.

The above design principles are a concise description of the design philosophy for the Spec-

trum Simulation System. Their influence is evident in the Spectrum design. We will use

these principles in Chapter 6 to evaluate Spectrum and compare it with related languages and

systems.

At this point, we should say a few words to distinguish simulation systems from other

kinds of software development tools. The purpose of a simulation system, and Spectrum in

particular, is to generate executions of algorithms for study and analysis. The difference between

a simulation system and an animation system, such as BALSA [10, 11], is subtle but important.

In general, the purpose of an animation system is to teach an already well-understood algorithm

to others. An animation system typically has two kinds of users, those who set up the animation

and those who watch the animation in order to understand the algorithm. Animations are

typically rather involved, are constructed by embedding extra procedure calls in the algorithm

itself, and are often tailored to a particular algorithm execution or input. In a simulation system

like Spectrum, the person setting up the visualization does not necessarily fully understand the

algorithm. Since the purpose of the simulation system is to allow an algorithm designer to

experiment with the algorithm in order to understand it more fully, we are not interested

in fancy animation tricks that require special knowledge of the algorithm executions. We

want visualization techniques that are simple enough to be set up quickly, general enough

to accommodate any possible execution of the algorithm, and flexible enough to encourage

experimentation. Also, as mentioned in our design goals, we want the visualization mechanisms

to be clearly separated from the algorithm itself.

A simulation system is also not a theorem prover. A simulation system may be used to

assist in program verification by checking properties of particular executions. However, it does

not prove properties about all possible executions (as do theorem provers such as LP [21, 22]

or Isabelle [52]), and it does not perform exhaustive search to check properties of all possible

states (as does the Statemate system [26], which we will discuss later).

1.3. THESIS OVERVIEW 21

One final note of clarification is that we are primarily concerned with the simulation of

complex asynchronous algorithms on a sequential machine, with an eye to understanding these

algorithms and proving their correctness. A large amount of research has been done in the

area of discrete event simulation, where the emphasis is on fast simulation of algorithms with

real-time constraints in order to study their time performance. That research has emphasized

improving simulation performance through concurrency. (For example, see Misra [49].) How-

ever, despite the difference in emphasis, some ideas from discrete event simulation are relevant

to this thesis, particularly to Chapter 9 which addresses distributed simuation.

1.3 Thesis Overview

This thesis is divided into two parts. In the first part (Chapters 2 to 6), we present the Spectrum

Simulation System, beginning with a review of its theoretical foundations and ending with an

evaluation in terms of the design goals we have just stated. Motivated by this evaluation, the

second part of the thesis (Chapters 7 to 9) proposes several extensions to the model and system.

We now present a detailed overview of both parts of the thesis.

We have said that the Spectrum Simulation System is a research tool for the design and

study of distributed algorithms expressed as collections of I/O automata. The tool consists of

three main components, the programming language, the simulator, and the user interface. Cen-

tral to the design of Spectrum is a clear separation of automaton types, which are the different

kinds of components in an automaton system, and the configuration, which defines the num-

ber of instances of each of those types and the relationships among them. The programming

language, defined in Chapter 3, provides constructs for describing distributed algorithms as

I/O automaton types. The language provides constructs that support algorithm visualization

and mechanical checking of state invariants. I/O automaton types are separately instantiated

in order to form an automaton system configuration. The Spectrum simulator, described in

Chapter 4, provides facilities for generating executions of these automaton systems. The graph-

ical user interface, described in Chapter 5, is used both for defining the configuration and for

controlling the simulation. Spectrum is written entirely in C [34] and runs on DEC Microvax

workstations. The user interface is built on top of the XlI window system [56]. In Chap-

ter 6, we conduct an evaluation of Spectrum using the design goals described in Section 1.2. In

22 CHAPTER 1. INTRODUCTION

that chapter, we draw comparisons with related languages and systems. and reflect upon the

experiences of Spectrum users.

Motivated by the evaluation of Spectrum. Chapters 7 and 8 propose two extensions to the

I/O automaton model in order to express (and eventually simulate) a wider class of distributed

algorithms. The first extension, shared memory, allows a collection of automata to make atomic

accesses to shared variables. This extension results in a unified model for expressing two large

classes of distributed algorithms (message-passing algorithms and shared memory algorithms).

A complete assertional proof of Dijkstra's classical shared memory mutual exclusion algorithm

[15] is presented to illustrate the shared memory definitions. Another way to model shared state

in the I/O automaton model is to model the shared variables as I/O automata that respond

to requests to access the variables. We present a general theorem that relates atomically

accessed shared memory to the asynchronous invocation-response implementation. The second

extension, superposition, allows one to describe an algorithm as a series of layers such that higher

layers may observe the internal state of lower layers. Besides adding to the expressive power

of the Spectrum language, this extension will be particularly useful for monitoring global state

invariants during simulation. To illustrate the superposition definitions, the global snapshot

algorithm of Chandy and Lamport [13] is presented with a complete proof of correctness. For

both model extensions, corresponding language and simulation system extensions are proposed.

Most of the thesis is concerned with simulation of distributed algorithms on a single se-

quential machine. Distributing the simulation, besides being an interesting exercise in itself,

can also reduce the simulation time. In Chapter 9, we define the logically synchronous mul-

ticast problem, which imposes a natural and useful structure on message delivery order in an

asynchronous system. In this problem, a computation proceeds by a sequence of multicasts,

in which a process sends a message to some arbitrary subset of the processes, including itself.

A logically synchronous multicast protocol must make it appear to every process as if each

multicast occurs simultaneously at all participants of that multicast (sender plus receivers).

Furthermore, if a process continually wishes to send a message, it must eventually be permitted

to do so. We present a highly concurrent solution to the logically synchronous multicast prob-

lem and describe how the logically synchronous multicast protocol can be used to distribute

the simulation system. Related broadcast protocols are also discussed.

Chapter 2

The Model

The I/O Automaton model [47, 48] has been chosen as the foundation of the Spectrum Sim-

ulation System primarily because it is a natural model for describing distributed algorithms.

Careful proofs using this model have been constructed using a variety of techniques for a wide

range of algorithms (for examples. see [9, 19. 24, 41. 43, 45, 46, 47. 58, 59]). In this chapter, we

present a review of the I/O automaton model adapted from [48]. Interested readers are referred

to that paper for more details, motivation. examples. and results. In the course of presenting

the model, we highlight those properties that help make the model a solid foundation for a

distributed algorithm simulation system. The final sections of this chapter compare the I/O

automaton model with related models and justify our selection of the I/O automaton model as

formal framework for the Specti um Simulation System. Further discussion of our choice of this

model is contained in Chaptet 6.

2.1 I/O Automata

I/O automata are best suited for modelling systems in which the components operate asyn-

chronously. Each system component is modeled as an I/O automaton, which is essentially a

nondeterministic (possibly infinite state) automaton with an action labeling each transition.

An automaton's actions are classified as eithcr 'input', 'output', or 'internal'. An automaton

can establish restrictions on when it will perform an output or internal action, but it is unable

to block the performance of an input action. An automaton is said to be closed if it has no

23

24 CHAPTER 2. THE MODEL

input actions; it models a closed system that does not interact with its environment.

Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint

sets in(S), out(S), and int(S) of input actions, output actions, and internal actions, respectively.

We denote by ct(S) = in(S) U out(S) the set of external actions. We denote by local(S) =

out(S) U int(S) the set of locally controlled actions. An I/O automaton A consists of five

components:

* an action signature sig(A),

* a set states(A) of states,

* a nonempty set start(A) C states(A) of start states,

* a transition relation steps(A) g states(A) x acts(A) x states(A) with the property that

for every state s' and input action ir there is a transition (s', 7r,s) in steps(A). and

* an equivalence relation part(A) partitioning the set local(A) into at most a countable

number of equivalence classes.

The equivalence relation part(A) will be used it the definition of fair computation. Each class

of the partition may be thought of as a separate process. We refer to an element (s', 7r, s) of

steps(A) as a step of A. If (s',7r,s) is a step of A, then r is said to be enabledin s'. Since every

input action is enabled in every state, automata are said to be input-enabled. This means that

an automaton is unable to block its input.

An execution of A is a finite sequence so,Ir1,sl,... ,irn,s, or an infinite sequence

s 0 , 7rl,s 1 ,7r2 ,... of alternating states and actions of A such that (si,ri+l,3,+l) is a step

of A for every i and so E start(A). The schedule of an execution a is the subsequence

of a consisting of the actions appearing in a. The behavior of an execution or sched-

ule a of A is the subsequence of a consisting of external actions. The sets of executions,

finite executions, schedules, finite schedules, behaviors, and finite behaviors are denoted

execs(A), finezecs(A), scheds(A), finscheds(A), behs(A), and finbehs(A), respectively. The same

action may occur several times in an execution or a schedule; we refer to a particular occurrence

of an action as an event.

2.2. COMPOSITION 25

2.2 Composition

We can construct an automaton modelling a complex system by composing automata modelling

the simpler system components. When we compose a collection of automata, we identify an

output action 7r of one automaton with the input action ir of each automaton having 7r as an

input action. Consequently, when one automaton having 7r as an output action performs 7r, all

automata having 7r as an action perform ir simultaneously (automata not having i" as an action

do nothing).

Since we require that at most one system component controls the performance of any given

action, we must place some compatibility restrictions on the collections of automata that may be

composed. A countable collection {Si}iI of action signatures is said to be strongly compatible

if for all i,j E I satisfying i 5 j we have

1. out(S,) fl out(Sj) = 0,

2. int(Si) n acts(Sj) = 0, and

3. no action is contained in infinitely many sets acts(Si).

We say that a collection of automata is strongly compatible if the corresponding collection of

action signatures is strongly compatible.

The composition S = r-I Si of a countable collection of strongly compatible action signa-

tures {Si}iEI is defined to be the action signature with

" in(S) = Uilin(Si) - UiEIOUt(Si),

" out(S) = UiElout(Si), and

* int(S) = Uieiint(Si).

The composition A = MEt Ai of a countable collection of strongly compatible automata {Ai}iEi

is the automaton defined as follows:1

* sig(A) = FLI sig(A,),

'Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is defined
in terms of the composition of action signatures just defined. Also, we use the notation isl] to denote the ith
component of the state vector 1.

26 CHAPTER 2. THE MODEL

" states(A) = Ilic, states(Ai),

" start(A) = Istart(Ai),

" steps(A) is the set of triples (1,'7r,s2) such that, for all i E I, if r E acts(Ai) then

(s1[i], T, s2[i]) E steps(Ai), and if r ' acts(Ai) then s1[i] = s2[i], and

" part(A) = Uilpart(Ai).

Given an execution a = sA's, ... of A, let alAi (read "a projected on Ai") be the sequence

obtained by deleting 7rjs when 7rj acts(Ai) and replacing the remaining sr by s[i].

2.3 Fairness

Of all the executions of an I/O automaton, we are primarily interested in the 'fair' executions -

those that permit each of the automaton's primitive components (i.e., its classes or processes) to

have infinitely many chances to perform output or internal actions. The definition of automaton

composition says that an equivalence class of a component automaton becomes an equivalence

class of a composition, and hence that composition retains the essential structure of the system's

primitive components. In the model, therefore, being fair to each component means being fair

to each equivalence class of locally controlled actions. A fair execution of an automaton A is

defined to be an execution a of A such that the following conditions hold for each class C of

part(A):

1. If a is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either a contains infinitely many events from C, or a contains infinitely

many occurrences of states in which no action of C is enabled.

We denote the set of fair executions of A by fairexecs(A). We say that 3 is a fair behavior of

A if (is the behavior of a fair execution of A, and we denote the set of fair behaviors of A by

fairbehs(A). Similarly, /3 is a fair schedule of A if 3 is the schedule of a fair execution of A, and

we denote the set of fair schedules of A by fairscheds(A).

The definitions of composition and fairness imply certain natural relationships between the

(fair) executions of a composition and the (fair) executions of the individual components. For

2.4. PROBLEM SPECIFICATION 27

example, the following lemma from [48] states that (fair) executions of component automata

can often be pasted together to form a (fair) execution of the composition.

Lemma 2.1: Let {Ai}ie r be a strongly compatible collection of automata and let A = ILiAi.

Suppose ai is a (fair) execution of Ai for every i E I, and suppose 3 is a sequence of actions in

acts(A) such that 3JAi = sched(ai) for every i E 1. Then there is an (fair) execution a of A

such that 3 = sched(a) and ai = alAi for every i E I. Moreover, the same result holds when

acts and sched are replaced by ert and beh, respectively.

2.4 Problem Specification

A 'problem' to be solved by an I/O automaton is formalized as a set of (finite and infinite)

sequences of external actions. An automaton is said to solve a problem P provided that its set

of fair behaviors is a subset of P. Although the model does not allow an automaton to block its

environment or eliminate undesirable inputs, we can formulate our problems (i.e., correctness

conditions) to require that an automaton exhibits some behavior only when the environment

observes certain restrictions on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We

therefore define a schedule module H to consist of two components, an action signature sig(H),

and a set scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of

actions of H. Subject to the same restrictions as automata, schedule modules may be composed

to form other schedule modules. The resulting signature is defined as for automata, and the

schedules scheds(H) is the set of sequences 3 of actions of H such that for every module H' in

the composition, 31H' is a schedule of H'.

It is often the case that an automaton behaves correctly only in the context of certain

restrictions on its input. A useful notion for discussing such restrictions is that of a module

'preserving' a property of behaviors. A set of sequences P is said to be prefix-closed if 3 E P

whenever both 3 is a prefix of a and a E P. A module M (either an automaton or schedule

module) is said to be prefir-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-

closed module and let P be a nonempty, prefix-closed set of sequences of actions from a set

0 satisfying § n int(M) = 0. We say that M preserves P if oirl- E P whenever 0I E P,

28 CHAPTER 2. THE MODEL

7r E out(M), and /37rjM E finbehs(M). Informally, a module preserves a property P iff the

module is not the first to violate P: as long as the environment only provides inputs such

that the cumulative behavior satisfies P, the module will only perform outputs such that the

cumulative behavior satisfies P. One can prove that a composition preserves a property by

showing that each of the component automata preserves the property.

2.5 Alternative Models

The I/O automaton model is only one of a number of formal models that have been used

for reasoning about concurrent systems. A review of alternative models, with an emphasis

on techniques for proving algorithm correctness, is contained in [47]. But one's choice of a

formal model not only influences the way in which one reasons about algorithms, but also

has a strong influence on the way in which one describes algorithms, and particularly the

ease with which this is done. Therefore, as we stated in our design goals for the Spectrum

Simulation System, it is important to be sure that one chooses a formal model that is natural

for expressing the class of algorithms one wishes to describe. In this section, we briefly describe

three popular formal models that have been used for describing distributed systems: CSP

[31], Unity [14) and Statecharts [27, 28]. In the course of this discussion, we highlight those

differences in expressive power that led us to choose the I/O automaton model as the basis of

the Spectrum Simulation System. Here, we discuss only the formal models. We will discuss

related programming languages and systems in our evaluation of Spectrum in Chapter 6.

2.5.1 CSP

Hoare's Communicating Sequential Processes (CSP) [31] is a close relative of the I/O automaton

model. A CSP program consists of a set of processes written as sequential programs. Each

program may contain statements that attempt to send or receive data over channels connected

to other processes. The channels are synchronous, meaning that the data transfer occurs

simultaneously at both ends of the channel, only after both the sender and the receiver are at

the appropriate points in their programs. Thus, unlike in the I/O automaton model, a process

that is not prepared to receive data may block a process that is prepared to send the data. This

2.5. ALTERNATIVE MODELS 29

makes CSP unnatural for describing systems in which the individual processes axe autonomous.

Many distributed algorithms have the property that different processes in a system may

be at completely different points in the execution of their protocols. In such algorithms, a

process typically must be able to service requests from other processes (such as a request for

a resource) at any time. Thus, describing a component in a distributed system as a single

sequential thread of control is rather awkward, since this sequential thread must continually

"poll" its incoming channels for such requests. Partially addressing this problem, CSP provides

a language construct that allows a process to attempt to send or receive data over multiple

channels at a given point in its program; whichever of these data transfers succeeds first is the

one executed. This is a powerful construct, but its inherent synchrony does not fit well with

the properties of a distributed system. The nondeterministic control flow and input-enabling

property of I/O automata combine to provide a more suitable mechanism for expressing this

kind of distributed algorithm.

In Chapter 6, we will discuss the Occam programming language [32. 53] based on CSP.

2.5.2 UNITY

Another programming model, UNITY (which stands for Unbounded Nondeterministic Iterative

Transformations) [14], abandons the sequential control flow of CSP in favor of nondeterministic

choice. A UNITY program consists of a set of statements that access a global shared memory.

At each step in the (infinite) execution, a statement is selected and executed. Schedules are

constrained to be fair, meaning that each statement is executed infinitely often. One may think

of each statement as a separate process, which is given fair turns to take steps. Since UNITY

programs do not terminate, the notion of algorithm termination is defined in terms of a fixed

point in the execution, after which no statements cause state changes. The UNITY model has

a programming logic that is useful for constructing rigorous correctness proofs of algorithms.

To model distributed computation in UNITY, one declares variables that represent channels

and writes statements for sending and receiving data that update those variables. Since there

is no notion of an "input action" in UNITY, processes must actively read the shared variables

in order to become informed of the output of other processes. This rules out synchronous in-

terprocess communication. Modularity is a problem in UNITY because the interfaces between

30 CHAPTER 2. THE MODEL

program modules are not describable in terms of well-defined sets of actions at module bound-

aries, as in the I/O automaton model, but must be deduced from the program variables that

each component accesses. Collections of communicating processes are combined into a single

program using UNITY's union operator, which, as its name suggests, simply takes the union

of the sets of statements of the individual processes to form the new program. One may speak

informally of certain UNITY statements as belonging to a particular process, but there is no

formal notion of separate system components with their own actions and local variables.

2.5.3 Statecharts

Statecharts (27, 281 piuvide a modular way to describe complex systems. Essentially, each

orthogonal component of a statechart is a finite state machine that, in response to an event,

may make a state transition and (optionally) generate a new event. The state of the system is

the collection of states of the components.

A complication of the statechart semantics is the notion of a chain reaction. Whenever

an input occurs, the entire system makes an atomic state transition. But since a given event

may be an input to several statechart components, a statechart may generate many new events

in response to a single input event. These new events may be inputs to still other system

components, and so on. Such a chain reaction is considered to be an atomic step of the system,

and the order in which events occur within a chain reaction is important in determining the

resulting state of the system. This sort of system behavior does not occur in the I/O automaton

model because an atomic step of an I/O automaton may involve a single input action or a single

output action, but not both. We will say more about this separation in Chapter 6.

Another important difference between statecharts and I/O automata is that statecharts are

finite state machines. This makes them amenable to graphical programming, but results in a

loss of expressive power. Since each state of a statechart component is represented explicitly, it

is difficult to use statecharts to express many kinds of distributed algorithms (e.g., those that

use unbounded counters or message buffers).

The Statemate system [26], based on the Statechart model, provides a graphical editor for

building statecharts, a statechart simulator, and automatic translation into Ada and C. State-

mate exploits the hierarchical structure of statecharts by permitting users to design an(' itudy

2.6. SUMMARY 31

complex systems at varying levels of detail. And since statecharts are finite state machines,

Statemate can also provide exhaustive testing. We will discuss Statemate further in Chapter 6.

2.6 Summary

In this chapter, we described the I/O automaton model, which has proven to be a useful tool

for describing distributed algorithms and proving their correctness. In the following chapters.

we will see that many of the same properties that have contributed to the success of the model

also provide a good foundation for both a programming language and a simulation system for

distributed algorithms.

32 CHAPTER 2. THE MODEL

Chapter 3

The Spectrum Language

The three main components of the Spectrum Simulation System are the programming language,

the simulator, and the user interface. In this chapter, we present the Spectrum programming

language, whose purpose is to provide a means to express algorithms as I/0 automaton types,

the building blocks of I/O automaton systems.

The Spectrum programming language is the first executable language based on the I/O

automaton model. In the literature, the transition relations of I/O automata typically have

been described using variants of the "precondition/effect" notation of Lynch and Tuttle [48]

based on Dijkstra's guarded commands. In this notation, each action has a precondition that

maps each state of the automaton to a boolean value, and the action is enabled in exactly

those states in which the precondition is true. (Since input actions are always enabled, their

preconditions are taken to be true in all states.) Similarly, each action has an effect that defines

the new state of the automaton based on the action and the state from which the action occurs.

However, the notations used to express these preconditions and effects have, until now, been

rather ad hoc. Furthermore, authors usually have resorted to prose to define the data types

and initial values of state components, as well as the partition of locally controlled actions. In

contrast, the Spectrum programming language provides well-defined constructs for expressing

each of the five basic components of an I/O automaton: the signature, states, initial states,

nondeterministic transition relation, and partition of locally-controlled actions. The language

is structured to integrate these five components into an easily digestible form. For example,

state components are declared first in an automaton description, actions are dearly marked

33

34 CHAPTER 3. THE SPECTRUM LANGUAGE

as either 'input' or 'output,' steps in the transition relation involving a particular action are

defined immediately following the appearance of that action in the signature, and a simple

construct is used to clearly divide the output actions into separate classes.

Traditionally, I/0 automaton descriptions have treated action "arguments" as part of the

action name, allowing a given automaton to have infinitely many actions. Since we cannot eval-

uate preconditions for infinitely many actions in finite time, Spectrum separates the traditional

precondition into two parts: a PRE (precondition) clause and a SEL (selection) clause. The

PRE clause determines if there exists an assignment to the arguments of the action that would

result in an enabled action, and the SEL clause is used to select the particular argument values

for an enabled action. This will become clear as we present the details of the language.

Since the Spectrum language is part of a research tool for algorithm design and study,

linguistic support for verification, analysis, and visualization are also provided. The language

provides a means to express state invariants (predicates on the automaton state) to be checked

after each of its steps in an execution. We also present a mechanism called a spectator, a

separate I/O automaton having only input actions, that is useful for mechanically verifying

during simulation that an automaton's execution is among the set of executions permitted by

its specification, as well as for keeping track of various properties of an execution (such as

the number of times a particular component enters its critical section) for analysis purposes.

In addition, a mechanism is provided for defining pseudovariables, which may be mapped to

colors in a graphical display of the algorithm execution. In keeping with our design goals, all

of this extra language support is provided in such a way as not to obscure the algorithm being

studied. The "extra" pieces of code that axe present only for purposes of studying the algorithm

are clearly separated from the algorithm itself. In spite of this separation, the mechanisms

themselves are well-integrated with the rest of the language: the same sorts of expressions used

to describe the algorithm are also used to define invariants, spectators, and pseudovariables.

In order to shorten the write/simulate/modify cycle, the language is interpreted, provides a

convenient set of built-in data types, and is statically type-checked. These last two properties

make it easier to express algorithms at a high level and permit users to concentrate on debugging

their algorithms, rather than on finding obscure errors in their programs.

The remainder of the chapter is organized as follows. We begin in Section 3.1 by identifying

3.1. THEORETICAL FOUNDATIONS 35

those aspects of the model that form a solid foundation for an implementable programming

language, as well as those that must be compromised slightly in order to achieve a practical

implementation. Then. in Section 3.2 we discuss a major design decision of the Spectrum Simu-

lation System. namely the separation of I/O automaton types from the I/O automaton system

configuration. Following this, Section 3.3 contains the details of specific language mechanisms

for defining I/O automaton types. Section 3.4 contains an example of an automaton type for

LeLann's leader election algorithm [39]. Finally, Section 3.5 describes special language support

for verification, analysis, and visualization. A grammar for the language syntax and a list of

built-in functions are contained in the appendix. This chapter contains sufficient detail to serve

as an introduction to the Spectrum programming language for potential Spectrum users. The

implementation of the language is described in the next chapter.

3.1 Theoretical Foundations

In the previous chapter, we reviewed the I/O automaton model on which the Spectrum pro-

gramming language is based. Before presenting the language, we identify those features of the

model that provide a solid foundation for a useful and implementable programming language,

and also discuss those features of the model that must be modified slightly in order to produce

an implementable language. We begin with the model features that can be captured directly

in the language:

" Automata consist of five components: a set of states, a set of initial states, a set of actions

divided into input actions and output actions, a transition relation, and a partition of the

output actions into classes. 1

" Input actions are always enabled, and output actions are under the control of only one

automaton. In this way, we can describe systems of autonomous components.

* Atomicity is made explicit. I/O Automata are described in terms of state transitions,

where each transition is executed atomically. There is no doubt about which are the

atomic steps.

'For simplicity, we treat internal actions as output actions that are not inputs to other components.

36 CHAPTER 3. THE SPECTRUM LANGUAGE

" Communication is accomplished by shared actions. Since shared actions take place si-

multaneously at all the participating automata, it is easy to reason about communication

among the automata.

" Automata may be composed to construct complex systems. This gives rise to flexible

modularity and straightforward encapsulation mechanisms. System modules can be com-

posed in a variety of ways (for example, in a hierarchy or a series of layers). Reasoning

about modules is accomplished in terms of the actions that occur at their boundaries.

" Transition relations are nondeterministic. Nondeterminism is useful for program devel-

opment. One can first write a loosely structured program, prove it correct using the

model, and then "tune" it for performance by placing additional preconditions on locally

controlled actions with the knowledge that safety properties still hold.

" The model is simple, having relatively few concepts. Many possible language features,

such as elaborate control constructs and user-defined abstract data types, are orthogonal

to the basic concepts of the model and could be added to the Spectrum language without

disruption.

Although the above is not a complete list of the features of the language, it should be clear

that most of the features of the model are suitable for an implementable programming language.

However, there are several aspects of the model that cannot be implemented:

o Obviously, it is impossible, to implement a truly infinite-state automaton on a digital

computer with finite storage. Nonetheless, we can support data structures that give the

illusion of an infinite state set and allow the state space of automata to be quite large -

large enough for any practical algor'thm.

o Since the implementation must run on a deterministic machine, we provide randomiza-

tion in the language and the scheduler in place of nondeterministic choice in the model.

Luckily, the model does not rely on nondeterminism in the automata-theoretic sense.

That is, nondeterminism is not used in the model to "guess" a correct solution to be

deterministically checked. Rather, nondeterminism is merely present to permit a large

number of possible executions of the algorithm. All of these executions are supposed

3.1. THEORETICAL FOUNDATIONS 37

to be correct, as opposed to the usual automata-theoretic case where only one need be

correct. Therefore, substituting randomization for nondeterminism is an acceptable de-

sign decision. Since the intention is to build a tool that encourages experimentation with

algorithms, and since generating many different executions of an algorithm is one way to

achieve this, we provide randomization in the language rather than requiring that algo-

rithm designers transform their general solutions to ones that make fixed deterministic

choices. Alternatives to randomization in the scheduler, such as deterministic schedulers

and user-controlled scheduling, will be discussed later.

* The model assumes that systems may have infinitely many automata and that the au-

tomata all exist at the beginning of an execution. Our implementation can support only a

finite number of automata, all in existence at the beginning. In addition, each automaton

is allowed only a finite number of equivalence classes in the partition. 2

The notion of fairness is important in both the model and the implementation. but is only

secondarily a language consideration. One might imagine various algorithms for scheduling

automaton classes, which may or may not satisfy the fairness requirement imposed by the

model. However, the only requirement for the language is that one be able to specify the set

of classes to which one must be fair. Then it is the responsibility of the simulator to guarantee

fairness. (As we will see in the next chapter, the current implementation of Spectrum provides

two schedulers, a round-robin scheduler and a randomized scheduler. The round-robin scheduler

guarantees that all executions are fair, while the randomized scheduler produces fair executions

with high probability.)

Having discussed generally how the properties of the I/O automaton model can be cap-

tured in an implementable language, we now turn to the details of the Spectrum programming

language design.

2An interesting possibility for further work would be to add language constructs for creating new automata
and classes dynamically to provide the illusion of an infinite set.

38 CHAPTER 3. THE SPECTRUM LANGUAGE

3.2 A Separation of Concerns: Automaton Types vs. Config-

urations

At the beginning of this chapter, we said that the purpose of the Spectrum programming

language is to express I/O automaton types, the building blocks of I/O automaton systems.

An automaton type defines the signature, states, transition relation, and action partition of

potentially many different automata. Having defined a collection of automaton types in the

language, one separately supplies a configuration that defines the set of instances of automaton

types to be simulated. In other words, the language is not used to define the entire system to be

simulated, but only to define the different kinds of automata that may exist in a system. This

division is central to the design of the Spectrum Simulation System. It separates the algorithm

description from the system configuration in which the algorithm is to run, and allows one to

experiment with algorithms by varying the system configuration independently.

One may think of an automaton type as a program and an automaton instance as a single

invocation of that program. Each instance of a given automaton type has the same program,

but that program may reference information present in the configuration. Thus, two instances of

the same automaton type may have different initial states, signatures, transition relations. and

partitions. Because of this, we say that an automaton type is parameterizedby the configuration.

Therefore, it is important to have an understanding of what is contained in a configuration in

order to understand the programming language fully.

A configuratin defines the automaton instances and relationships between them. Every

configuration specifies the automaton type of each instance, and includes a unique automaton

id for each instance (assigned automatically by the system). At his or her option, the user may

assign each instance a string name, and may specif-, a set of directed edges that organizes the

instances into an arbitrary graph. As part of the configuration process, one may create new

automaton types by composing other automaton types; each instance of such a type is then

a composition of several instances of other types. If an instance's type is such a "composed

type," then we say that it is the "parent" of each of its instantiated components; this hierarchical

relationship is also included as part of the configuration data.

To avoid confusion, we emphasize that the programming language itself is not used to create

3.3. LANGUAGE CONSTRUCTS 39

composed automaton types, but only to define the lowest level automaton types in a system.

In Chapter 5, we will say more about creating composed types, and about the configuration

process in general.

One purpose of the configuration is to break symmetry. It may be used in arbitrary ways to

define the signatures and transition relations of automata. For example, in a configuration of

several instances arranged in a ring, one might use directed edges between instances to specify

which of the instances are neighbors. Later in this chapter, we will become more specific about

how configuration data are accessed within automaton type definitions.

3.3 Language Constructs

In this section, we present the Spectrum programming language constructs for defining the

states, initial states, signatures, transition relations, and partitions for I/O automaton types.

The mechanisms are presented one by one, and are followed in Section 3.4 by an illustrating

example. Since defining an I/O automaton system configuration is not strictly part of the

programming language, we defer that discussion to Chapter 5.

3.3.1 Data Types

The Spectrum programming language is strongly typed and statically type-checkable in order to

save users from wasting time searching for obscure errors in their code. The state components

of an automaton, the arguments of actions, the parameters of classes (to be explained later),

and the values of expressions in the language all have associated data types that are checked

for compatibility when an automaton types file is loaded into the simulator. In this section, we

describe Spectrum's built-in data types, mechanisms for constructing complex data types, and

functions for manipulating values of various data types. In later sections, we will see how these

data types are used in automaton type definitions.

The language supports four base types: integers, booleans, automaton id's, and strings.

In addition, the language provides five type constructors for building more compict-ted struc-

tures frow the base types- tuples with named fields, sets, multisets, sequences, and mappings.

Constructed types may be arbitrarily nested. For example, one can define sets of tuples. For

40 CHAPTER 3. THE SPECTRUM LANGUAGE

programming convenience, any data type may be assigned a mnemonic name using a DATA

declaration. In the following example. the first line defines the type buffer to be a multiset of

tuples, where each tuple has a string and an automaton-id. The second line defines the type

messages to be a mapping from automaton id's to buffers.

DATA buffer multiset(tuple(msg:string, to:automatonid))
DATA messages mapping(automaton-id, buffer)

Our notion of type equality is structural equality, where names of tuple fields are considered

to be part of the structure of a type. For example, the type same-type below is equivalent

to buffer above, but different-type is not. User-defined names for constructed data types are

simply conveniences in writing programs; they are irrelevant in type-checking. One may think

of a DATA declaration as a macro definition. Recursive declarations axe not permitted.

DATA pair tuple(msg:string, to:autoaton.id)
DATA same-type multiset (pair)
DATA different-_type multiset(tuple(name:string, id:automaton-id))

Every data type, including all constructed types, has operations for comparison (=, <, <, >, _)

and assignment. In addition, each data type has its own special set of operations. The data

type of the return value for each operation is inferred (statically) from the data types of its

arguments. For example, if myset is declared to be a set of integers, then set.minimum(myset)

returns a value of type integer. Similarly, the expected data types of different arguments

of a given function are checked (statically) for compatibility. For example, if mytuple is a

tuple variable, then the expression set.insert(myset,mytuple) would generate an error at

load-time, since one cannot insert a tuple into a set of integers. Operations (in addition to

assignment and comparison) for the various data types are summarized below and listed in

detail in Appendix B.

e integers: Operations include arithmetic inverse, addition, subtraction, multiplication,

truncated division, and mod. Additionally, integer variables may be used in "summary

mappings" for algorithm visualization purposes. We will say more about this in Chapter 5.

* booleans: Operations include testing for truth, negation, and logical and, or, xor, and im-

plication. Like integer variables, boolean variables may be used for summary mappings.

3.3. LANGUAGE CONSTRUCTS 41

All predicates in the language are boolean expressions. These include action precondi-

tions, tests in conditionals, and state invariants. We will discuss all of these in detail later

in this chapter.

" automaton id's: Operations for this data type provide the ability to access configuration

data. For example, if x is an automaton id, then neighbors(x) returns the set of au-

tomaton id's for the neighbors (in the configuration graph) of the automaton instance

with id x. The function self () returns the id of the automaton calling the function. An

automaton id may also be used to reference the following information about the associ-

ated automaton instance in a configuration: its name (a user-supplied string), its parent

in the composition hierarchy, its neighbors adjacent to incoming edges in the graph, and

its neighbors adjacent to outgoing edges in the graph. An operation is also provided for

obtaining the set of automaton id's for all instances of a given automaton type in the con-

figuration. Later, we will see how configuration data may be used to define the signature

and transition relation of an automaton instance.

" strings: One may manipulate strings using generic assignment and comparison operators.

Also, a decimal number represented as a character string may be converted to an integer.

This is particularly useful when one wishes to assign numerical names to automaton

instances in the configuration, and then perform arithmetic operations on those names.

" tuples: Using record notation (to an arbitrary depth), one can reference the fields of

tuples by name, and then operate on them individually according to their particular data

types. Tuples are convenient for storing multipart messages. For example, a message's

destination, text string, and sequence number can be manipulated as a unit using a tuple.

" sets and multisets: Operations include initialization (to empty), creation of a singleton set,

boolean test for empty set, finding the size of a set, testing for set membership, and set (or

multiset) union, intersection, and difference. Furthermore, one may select the minimum

or maximum element from a set, select an element at random, or select an element (or

maximal subset) such that a given boolean expression is satisfied. Quantification over

a set (forall, exists), and iteration over a set (forall x in set s do ...) is also supported.

42 CHAPTER 3. THE SPECTRUM LANGUAGE

In distributed algorithms, sets and multisets are commonly used as buffers (e.g., to keep

track of pending messages).

* sequences: Operations include initialization (to the empty sequence), inserting at the

front or back, deleting from the front or back, deleting the first occurrence of a specific

element, test for membership, and finding a random element without modifying the se-

quence. Sequences are particularly useful for implementing stacks and queues, as well as

maintaining history information.

* mappings: Operations include initialization (in which a default value is specified for "un-

mapped" elements of the domain), assignment of the value of a mapping for a particular

element of the domain, and evaluation of the mapping at a particular element of the

domain. Mappings are useful for representing dynamically changing functions (e.g., to

keep track of status information for each adjacent edge). In addition, we will see that

mappings are useful data types for algorithm visualization.

In order to prevent references to undefined variables, each base type in the language has a

default value. Similarly, each type constructor has a default value, defined recursively on the

basis of the defaults for its component types. As we will see in Section 3.3.3, a mechanism is

provided for explicitly defining the initial values of variables, but these defaults are used when

no explicit initial value is provided.

Readers should refer to Appendix B for a complete summary of the supported operations.

Currently, there is no provision in the language for writing user-defined operations. However,

the language implementation is such that new operations may be added easily. Note that (with

the exception of record notation) all of our syntax uses an applicative style; there are no infix

operators. This adds to the length of our programs and can impair readability somewhat, but

is not an inherent problem with the language. One might imagine "sugared" versions of the

syntax that could be preprocessed into our applicative style.

3.3.2 Action Types

We use action types to define the different kinds of actions that may be used in the signatures

of automaton types. Since a given action may be shared by many different automaton types,

3.3. LANGUAGE CONSTRUCTS 43

action types are declared outside of the scope of any automaton type definition. Each action

is declared with a name and an argument type. The name is used to identify the action in the

signatures of automata and in executions. The argument type defines the data type for the

argument of the action. For example,

ACTION send tuple(msg: string, to: automaton-id)

declares an action with the name "send" and an argument that is a tuple consisting of a text

string (named msg) and an automaton-id (named to). In descriptions of the transition relations

of automaton types, the argument of an action is referenced by the name a, and record notation

is used to refer to the argument components. For example, in the context of an event for the

action above, one would refer to the first component of the argument by a.msg. This is described

further in Section 3.3.3.

In addition to the user-defined argument for each action type, there is an implicit argument

a.owner of type automaton-id, which names the automaton for which the action is an output.

This argument may be referenced in the same way as the user-defined arguments. Having this

argument ensures that every action in the system is under the control of a single automaton.

(In the current implementation, a.owner is not accessible in automaton type definitions, but

can be duplicated, of course, as part of the user-defined argument of an action.)

Simply declaring an action type does not associate it with any particular automata. It is

the signature of an automaton that determines which are its input and output actions. When

events take place during a system execution, the set of participating automata is determined

according to the automaton signatures; each participant automaton takes a step according to

its transition relation, its current state, the action name, and the action argument values. In

the next section, we describe how the states, signatures, and transition relations of automaton

types are defined.

3.3.3 Automaton Types

As mentioned earlier, there are two ways to define an automaton type. The first is to write

an explicit textual definition in the Spectrum programming language. The second is to use

the graphical interface to compose several automaton types into a new "composed" automaton

44 CHAPTER 3. THE SPECTRUM LANGUAGE

type. In this section, we consider only the first method; the latter is discussed when we describe

the user interface in Chapter 5.

Every automaton type declaration begins with a type name. For example, the line

AUTOMATON channel

says that we are about to define an automaton type with the type name channel. Each sub-

sequent line (up to the next automaton declaration) is used to define the various pieces of the

channel automaton type. Recall that an I/0 automaton consists of a set of states, a set of

initial states, a signature, a transition relation, and a partition of the locally controlled actions.

We now present the programming language constructs that Spectrum provides for defining each

of these pieces of an automaton type.

States

The first part of an automaton type definition, following the automaton type name, is the state

declaration. The set of states for an automaton type is defined with a data type. For example,

the line

STATE tuple(status: integer, buff:set(tuple(msg:string, to:automaton-id)))

says that each instance of this automaton type has two state components: an integer status,

and a set buff of (string, automaton-id) pairs. The set of states for an automaton with this

state definition would consist of the set of all possible assignments to these components. Thus,

an automaton with this state definition would have infinitely many states. (As we mentioned

earlier, there axe physical limitations of the computer, such as the largest representable integer

or the amount of memory available for storing text strings, that prevent us from implementing

a truly infinite state automaton. However, the language gives us the power to express infinite

state automata that may be implemented up to the limitations of the physical architecture.)

State components are private storage. In the definition of a transition relation, one refers to

the state as 9, and uses record notation to refer to particular state components. For example,

given the above state declaration, s. status would refer to the value of the first state component.

An automaton's state may be referenced almost anywhere in the definition of the transition

3.3. LANGUAGE CONSTRUCTS 45

relation, but may be modified only in effect clauses. We will describe this in more detail when

we discuss trarition relators.

The initial values for state components are defined in a special input action called initially,

which occurs as the first action of every execution. We will see an example of this in Section 3.4.

As we described in Section 3.3.1, any state component not explicitly assigned an initial value

is given a default value, but it is considered good style to initialize all state components.

Signatures

The action signature of an automaton type consists of a set of input actions and a set of output

actions.3 Recall that action types are defined outside of the scope of any automaton type. In

order to add a particular action type to the signature of an automaton type, one simply lists

the action type name, indicating whether it is to be classified as an input action or an output

action. For example, recall the action type send defined earlier. The line

INPUT send

says that all actions of type send are input actions to automata of this type. However, for

any particular action type, we may not wish that an automaton have in its signature all the

actions for all possible values of the argument. Therefore, the language provides a mechanism

for restricting the argument values for each action type in the signature. Such restrictions are

accomplished using a WHERE clause. For example, instead of the previous line, we might

write:

INPUT send WHERE set.el(neighbors(self(0), a.to)

This line specifies that the automaton being defined does not have all actions of type send as

input actions, but only those where the "to" component of the argument is an element of he

set of neighbors of the automaton in the configuration. (Recall that a.to refers to the "to"

component of the action argument.)

3In the I/O automaton model, the signature of an automaton consists of a set of actions, divided into input
actions, output actions, and internal actions. For simplicity, we have restricted the Spectrum language to input
and output actions only. An internal action can simply be regarded as an output action appearing in the signature
of only one automaton.

46 CHAPTER 3. THE SPECTRUM LANGUAGE

The above example illustrates one way that configuration data can be used to parameterize

thp signature of an automaton type; each automaton instance of this type would have a slightly

different signature, according to its set of neighboring automaton instances in the configura-

tion. A WHERE clause can be any boolean expression involving the arguments of the action,

constants, and configuration data. Since the signature of an automaton is static, a WHERE

clause cannot refer to values of state components. The set of output actions may be restricted

using WHERE clauses as well.

Transition Relations

Spectrum provides language constructs for defining transition relations that are similar to the

".precondition-effect" notion of Lynch and Tuttle. However, there axe important differences.

In the precondition-effect notation, a precondition is defined for each possible action name,

where an action name is taken to include the values of the action arguments. That is, Lynch

and Tuttle allow the precondition to depend on the values of the arguments. This is rather

impractical for a real programming language, since this might require considering each possible

value of the action argument in order to determine which actions of an automaton are enabled.

Considering that the data types of action argum.ents may have infinite domains, it would be a

costly (if not impossible) procedure to evaluate the precondition for each possible action and

determine the set of enabled actions.

We avoid this computational disaster by splitting the traditional precondition for an action

into two parts: the precondition ahd the selection. In the precondition, we consider the action

type as a single unit, ignoring the values of the arguments. The purpose of the precondition

is to answer the following question: "Is there some assignment to the arguments of the uction

type that would give rise to an enabled action in the current state?" That is, if we think

of each action type as a set of actions, the precondition in our language determines whether

or not this set of actions contains at least one action that is enabled in the current state.

Given that the precondition is satisfied, the selection clause is used to determine (possibly at

random) the particular values that are assigned to the arguments of the action. Separating

the argument selection from the precondition in this way avoids the impracticality of having

unbound variables in the precondition. It also means that one need not select action arguments

3.3. LANGUAGE CONSTRUCTS 47

whenever the precondition is tested, but only when that particular action type is chosen for the

next step of the execution.

So, the transition relation for an automaton type is defined by associating precondition,

selection, and effect clauses with the action types listed in the signature of the automaton.

Output actions may have all three kinds of clauses, while input actions have only effect clauses.

To make programming easier and enhance readability, the clauses for each action type imme-

diately follow the corresponding entry in the signature. We now say a few words about each of

these three kinds of clauses. Examples of each are contained in Section 3.4.

A precondition is a predicate (or conjunction of predicates) on the current state of the

automaton. Configuration data may be referenced in a precondition, but action arguments

may not be referenced. If the precondition of an action type evaluates to true in a given state,

then an output action of that action type is said to be enabled in that state.

A selection is an assignment to the argument of the action. When the argument has several

components, they may be assigned separately within the selection clause. The assignments are

executed sequentially and may reference (but not modify) state and/or configuration data. In

addition, once an argument component has been assigned a value, it may be referenced in later

assignments within the selection clause. In the current implementation, one must assign to all

argument components, even though the WHERE clause on the output action may restrict some

argument components to a single possible value; after selection, the system simply checks that

the WHERE clause is satisfied by the argument selected.

An effect clause is used to derive the new state of the automaton from the old state, according

to the action argument. It consists of a sequence of assignments or modifications to all or part

of the state of the automaton. Again, the statements are executed sequentially and effects of

earlier modifications are observed by later ones. Of course, one may reference (but not modify)

the action argument in the effect clause.

Partitions

So far, we have described how to define states, initial states, signatures, and transition relations

of I/O automaton types. We now consider the last of the five basic components of an I/O au-

tomaton, the partition of the locally controlled actions. Since we have restricted our signatures

48 CHAPTER 3. THE SPECTRUM LANGUAGE

to include only input and output actions, the locally controlled actions are simply the output

artions. Ve divide the output actions of an automaton type into classes by placing each output

action type in the signature within a CLASS block. For example, the lines

CLASS
OUTPUT send

CLASS
OUTPUT ack

OUTPUT grant

say that for each instance of this automaton type, all send actions axe in one class of the

partition and all ack and grant actions are in another class. The class block construct is

simple, and makes the division of actions into classes obvious at a glance. However, as we have

described it so far, the construct is not quite general enough, since all output actions of a given

type must belong to the same class. Sometimes one wishes to place different actions of the

same type into different classes, according to their argument values. Therefore, we allow a class

block to be parameterized using configuration data. Each parameter may take on values from

a fixed set, and the type of the parameter is inferred to be the type of the elements of that set.

Just as we use s to refer to state components and a to refer to action arguments, we use c to

refer to class parameters. For example,

CLASS (dest :neighbors (self ()))
OUTPUT send WHERE eq(a.to, c.dest)

declares several classes, one for each neighbor of the automaton instance in the configuration

graph. Since neighbors (self ()) is a set of automaton id's, dest has type automatonid. Each

class contains a set of send actions with that neighbor as the "to" component of the argument.

A class may contain more than one type of action, and may be parameterized by more than

one set. Although the number of classes must be finite, the number of actions within a class

may be infinite.

3.4. EXAMPLE 49

In defining a class, one may optionally specify a non-negative integer as the "weight" of

that class. In the current implementation, these weights are interpreted by the randomized

scheduler as the average relative speeds of the processes. For example, if two c!asses continually

contain enabled actions, and the weight of the first class is twice that of the second, then the

first class will take twice as many steps as the second, on average. If a weight is not explicitly

assigned, a default weight of 1 is used.4

3.4 Example

As an example of the use of the language, we present an implementation of LeLann's algo-

rithm for electing a leader in an asynchronous ring, where each process in the ring starts with a

unique identifier [39]. Essentially, each process passes a message containing its identifier to its

left neighbor in the ring. Processes forward only those messages containing identifiers greater

than their own. The process whose identifier travels all the way around the ring announces that

it is the leader. To model the asynchrony of message delivery, we place a channel automaton

between each pair of neighbors in the ring. The automaton types channel and process arc 3hown

in Figure 3-1. The user-supplied names in the configuration are used as the process identifiers.

(In a configuration, the default user-name of a process is its system-supplied automaton-id

converted to a string.)

Each automaton has an input action called initially. The action is not an output of any

automaton, but the system causes an initially event to occur once at the beginning of each

execution to initialize the state of each automaton. Uninitialized state components are assigned

default values, as described earlier.

In this example, each type of output action is in its own class. However, we could just as

easily place the send and leader actions in one class. Alternatively, one might parameterize

the class containing the send action as shown in Figure 3-2. In that figure, x is declared to

be of type automatonid, since the all-of-type function returns a set of automaton id's. For

each element of all of-type("process"), a separate class is created with x bound to that element.

Thus, each possible send action would be in its own class of the partition.

4it has been suggested that this default be changed to 100 in future versions of the system.

50 CHAPTER 3. THE SPECTRUM LANGUAGE

DATA message tuple(msg:string, chan:automaton.id)
DATA buffer multiset(message)

ACTION initially 0)
ACTION send message
ACTION receive message
ACTION leader string

AUTOMATON channel
STATE buffer
INPUT initially

EFF mset-init(s)
INPUT send WHERE eq(a-chan,selfo)

EFF mset-.insert(s,a)
CLASS

OUTPUT receive
PRE bool-not(mset-.empty(s))
SEL assign(a,mset..random(s))
EFF mset-.delete(s,a)

AUTOMATON process
STATE tuple(pending:set (string), status:string)
INPUT initially

EFF assign(s.pending,s,:t.single(name(self0)))
assigri(s status, "waiting")

INPUT receive WHERE set-9l(in(self0) ,a.chan)

EFF ifthenelse(greater(a.msg,name(self 0)),
set.Ansert(s.pending,a.msg),
ifthen(eq~a.msg,name~self 0)),

assign(s .status ,"elected")))
CLASS

OUTPUT send
PRE bool..not(set-.empty(s .pending))
SEL assign(a.msg,set..random(s.pending))

assign(a. chanset-.random(out(self0)))

EFF set-dolete(s .pending,a-msg)
CLASS

OUTPUT loader
PRE .q(s.status,"elected")
SEL assign(a~name(selfC))
EFF ass ign(e. status ,"announced")

Figure 3-1: Automaton types for LeLann's leader election algorithm.

3.5. SUPPORT FOR VERIFICATION, ANALYSIS, AND VISUALIZATION 51

CLSS (x: all-of -type("process"))
OUTPUT send

PRE set -el(s.pending,name(x))
SEL assign(a.msg.name(x))

assign (a. chan, set -random(out (self ()))
EFF set-delete(s .pending,a.msg)

Figure 3-2: A parameterized class.

3.5 Support for Verification, Analysis, and Visualization

In the previous sections, we presented Spectrum language constructs that allow one to express

algorithms as I/O automaton types. But since the language is part of an algorithm development

tool, we would like more than just the ability to express algorithms. We would like the language

to provide support for studying algorithm executions. In this section, we present language

constructs that are useful for algorithm verification, analysis, and visualization.

3.5.1 State Invariants

Constructing an assertional proof is a common method for showing that an algorithm meets

its specification. In an assertional proof, one states a number of properties on the state of the

system that imply the correctness of the algorithm. Then, one shows, usually by induction

on the length of the exec ition, that these properties are invariant. That is, they hold in all

reachable states of the algorithm. Often, the most difficult part of these proofs is in coming

up with the right set of invariants. Trying to construct a proof using the wrong invariants

can result in much wasted effort. It is helpful to be able to check invariants automatically on

algorithm executions in order to have an opportunity to refine them before proceeding with a

rigorous proof. Therefore, the Spectrum programming language provides the ability to specify

a set of invariants on the state of an automaton that are to be checked after each step of the

execution. For example, the clause

INVARIANT
less(s. status,5)
bool.or(greater(s.status, O), set-empty(s.buff))

specifies that the status component of the state must always be less than five, and that either

52 CHAPTER 3. THE SPECTRUM LANGUAGE

status is greater than zero or buff is empty. As we will see in Chapte- 4, after each step of the

automaton's execution, the set of invariants is checked, and the execution is interrupted if aa

invariant is violated.

In assertional proofs of distributed algorithms, it is quite common to write invariants that

involve the states of many different system components (i.e., global invariants). Unfortunately,

the INVARIANT construct in Spectrum allows one to express invariants only on the local state

of an automaton. We discuss this problem further in Chapter 6 and propose a solution in

Chapter 8.

3.5.2 Spectators

Assertional proofs use invariants on the state of a computation as a means to show properties

of the behavior of an algorithm. That is, our primary concern is not with the states themselves

but with determining that the sequence of actions that occurs at the boundary between the

algorithm and the environment is consistent with the problem specification. As we saw in

Chapter 2, the IO automaton model provides schedule modules as a way to specify problems

in terms of a set of allowable behaviors. In this section. we describe a device called a spectator

that allows one to check executions of algorithms against the set of allowable behaviors specified

by a schedule module.

For purposes of illustration, we define a schedule module for the mutual exclusion problem.

Fix n, a positive integer, and let 2 - {1,2, ... , n}. We define schedule module M with sig(M)

as follows:

Inputs: UserTryi, i E I Outputs: Crit1 ,i E 2

UserExiti, i E I Remi, i E I

Schedule module M interacts with an environment that may be thought of as a collection

of n user processes u., i E 1, where each process ui has outputs UserTry, and UserExiti, and

has inputs Criti and Remi. A UserTry action means that process ui wishes to enter its critical

section. A Criti action by M gives ui permission to enter its critical section. A UserExiti action

means that process u, is leaving its critical section. Finally, the Remi action gives u, permission

to continue with the remainder of its program. If 0 is a sequence of actions of M, then we

3.5. SUPPORT FOR VERIFICATION, ANALYSIS. AND VISUALIZATION 53

define , Ii to be the subsequence of 0 containing exactly the UserTry,, Crit,, UserExit,, and

Remi actions. Before defining the allowable schedules of M, we define the set of wen-formed

sequences of actions of .l. Let 3 be a sequence of actions in sig(M). We say that 3 is well-

formed iff for all i E I. all prefixes of /3i are prefixes of the infinite sequence UserTryi,. Crit',

UserExiti, Remi, UserTry,. Criti,..... This says, for example, that a process will not issue a try

request while in its critical section.

We define the set scheds(M), the allowable external behaviors of M, as follows. Let 3 be a

sequence of actions in sig(M). Then 0 E scheds(M) iff the following conditions hold:

1. M preserves well-formedness in /3.

2. If 3 is well-formed, then Vij E 11, if Criti and Critj occur in ,3 (in that order), then

UserExjt, occurs between them.

Condition (2) says that no two processes are in their critical sections simultaneously, pro-

vided that the user processes preserve well-formedness. One may notice that this schedule

module specifies only safety properties; it does not require that any progress be made. In

Chapter 7, we will see a similar schedule module that specifies both safety and liveness proper-

ties.

We would like to write a spectator to check executions of an automaton system against the

allowable behaviors specified by schedule module M. A spectator is simply an I/O automaton

with no output actions that observes the actions taken by other automata. By writing spectators

without output actions, we need not be concerned that a spectator could interfere with the

execution of an algorithm. Furthermore, it is not sensible to have spectators report a detected

error by means of an output action, because the scheduler might not give the spectator a chance

to take a step until much later in the execution. Instead, we write a spectator so that one of

its own invariants is violated whenever it detects an error. Conveniently, this interrupts the

simulation immediately, so that the user may explore the source of the error. One can usually

construct a spectator directly from the schedule module specifying the problem.

The spectator in Figure 3-3 corresponds to Condition 2 of schedule module M, and could

be used to check the executions of a mutual exclusion algorithm. In this spectator, the state

component last-crit keeps track of the index of the process most recently in the critical

54 CHAPTER 3. THE SPECTRUM LANGUAGE

AUTOMATON CheckMutex
STATE tuple(last-crit: integer, in-crit: boolean, ok: boolean)
INVARIANT eq(s.ok,true)
INPUT initially

EFF assign(s.last-crit, 0)
assign(s.in-crit, false)
assign(s.ok, true)

INPUT Crit
EFF assign(s.ok, bool.not(s.in-crit))

assign(s.last-crit, a)
assign(s.in-crit, true)

INPUT UserExit
EFF assign(s.ok, bool-and(s.in-crit, eq(s.last-crit,a)))

assign(s. in-crit, false)

Figure 3-3: A spectator for mutual exclusion.

section, and the component in-crit keeps track of whether the last input action was Crit or

UserExit. When a Crit action occurs, the invariant ok = true is violated if and only if no

UserExit occurred since the last preceding Crit action. When a UserExit action occurs, the

invariant is violated if and only if the argument of the action is not the index of the process

currently in the critical section. It is easy to see how these cases are derived from Condition 2

of schedule module M. One could write a similar spectator automaton type for checking that

each user's execution is well-formed.

Note that a spectator depends only on the problem specification, and never on the algorithm

itself. That is, a spectator for a given problem specification could be used to check any solution

to that problem. In addition to verifying that executions are correct, spectators can be helpful

in the analysis of algorithm efficiency. For example, one might use a spectator to count the

number of messages sent in an execution, or to keep track of the rates at which processes enter

their critical sections in a mutual exclusion algorithm. Again, because a spectator has no output

actions, we know that such analysis cannot interfere with the algorithm execution.

3.5.3 Pseudovariables

Another language construct provided in Spectrum is the MAINTAIN clause, which updates

state components after every action of an automaton. The MAINTAIN clause is somewhat

3.6. SUMMARY 55

similar to Lamport's state functions [37] and the ALWAYS construct of UNITY [14], which we

discuss in Section 6.1.2. It is used to maintain "pseudovariables," variables that are a function

of the remaining state components. For example,

MAINTAIN
assign(s.status, setsize(s.buff))

would cause the state component status to be updated to the buffer size after every step of

the automaton. The above is a relatively simple example, but a pseudovariable can be used to

summarize the state of an automaton in arbitrarily complicated ways. When pseudovariables

take on integer or boolean values, they can then be used as the basis of algorithm visualization.

As we will see in Chapter 5, each automaton instance is represented in the graphical user

interface as an icon. Within the interface, one can create "summary mappings" that associate

state components of an automaton type with the colors of the icons. In this way, important

automaton state information can be displayed during simulation. Using the above example,

one could create a summary mapping for the state component status and watch the sizes of

the buffers of each automaton grow and shrink as the execution proceeds; such a visualization

might be useful for identifying congestion in parts of the network being simulated.

MAINTAIN clauses are also useful for algorithm analysis. For example, one might place a

statement in the MAINTAIN clause to increment a counter whenever the automaton takes a

step. By keeping track of such information in the MAINTAIN clause, rather than dispersing it

throughout the transition relation, one can separate those parts of the code that concern the

algorithm itself from those that are present only for the purposes of visualization or analysis.

The MAINTAIN clause is executed after the effects clause of each action and before any local

invariants are checked. The expressions of the MAINTAIN clause are executed sequentially.

3.6 Summary

In this chapter, we saw that a separation of I/O automaton types and the configuration of

an I/O automaton system is a central part of the Spectrum design. We presented constructs

for defining the states, signatures, transition relations, and partitions of automaton types and

described linguistic support for verification, analysis, and visualization. As a partial summary

56 CHAPTER 3. THE SPECTRUM LANGUAGE

clause state action arguments class parameters configuration data
STATE declared -

INVARIANT read - read

MAINTAIN read/modified - read

ACTION - declared -

CLASS - declared read

WHERE - read read read

PRE read - read read

SEL read read/modified read read
EFF read/modified read read read

Figure 3-4: Data that may be declared, read, or modified by the various clause types.

of the constructs provided in the Spectrum programming language, Figure 3-4 lists, for each

kind of clause, those categories of values that may be declared, read, or modified by that clause.

In Chapter 6, we present an evaluation of the Spectrum Simulation System in terms of the

design goals we set out in Chapter 1. Although the programming language will be discussed in

this evaluation, at this point we say a few words about the programming language in isolation.

We should emphasize that the semantics of the language are entirely faithful to the I/O au-

tomaton model, with the exception that nondeterminism is replaced by randomization. Since a

large class of distributed algorithms is expressible in the I/O automaton model, the language is

natural for expressing a large class of distributed algorithms. In addition, I/O automaton com-

position provides us with the modularity necessary to enable users to write spectator automata

to check and analyze algorithm executions in such a way that they do not interfere with the

executions themselves.

The Spectrum language provides constructs for writing well organized descriptions of al-

gorithms as I/O automaton types. The names of automaton types, their state definitions,

signatures, transition relations, and classes are all laid out in a natural way in automaton type

definitions. Extra information, such as invariants for program verification and pseudovariables

for program visualization, are separated from the other constructs, so as not to obscure the algo-

rithm itself, yet are written using the same language mechanisms. The language provides a rich

set of built-in data types with associated operations that conveniently match those mathemat-

ical objects typically used to express distributed algorithms. However, language mechanisms

3.6. SUMMARY 57

for creating user-defined data types would be useful.

The applicative style of the Spectrum syntax (i.e., the lack of infix operators) makes it diffi-

cult to "think in Spectrum." Spectrum users have found it beneficial to first express algorithms

using a higher-level notation similar to that used by Lynch and Tuttle. Once the algorithms

are expressed in this way, writing the automaton type definitions in the Spectrum language is

straightforward. For example, Gupta [25] presents a number of distributed algorithms written

both in the higher-level notation and in the Spectrum programming language. In order to avoid

this extra step in the programming process, it would be useful to have a "sugared" version of

the syntax that permits infix operators, and an accompanying preprocessor to translate the

sugared version into the syntax we have presented here. Such a preprocessor might also have

an option to generate a "publication version" of the language in a form that could be used by

a text processor.

In Spectrum, control flow is determined completely by preconditions on actions and the

random choices of the scheduler. However, because people tend to think sequentially, the

individual processes in distributed algorithms sometimes take a sequential form. Therefore, it

may be useful to add syntactic sugar for simple control flow constructs that could be translated

into the language presented here. Additional state components would be added to the automata

by the preprocessor to keep track ' the "program counter," and preconditions would reference

this additional information.

58 CHAPTER 3. THE SPECTRUM LANGUAGE

Chapter 4

The Spectrum Simulator

In the previous chapter, we presented the Spectrum programming language used to define I/O

automaton types, the building bluocks of I/O automaton systems. In this chapter, we present the

Spectrum simulator, the second main component of the Spectrum Simulation System. Given

a collection of automaton types and a configuration, the simulator performs all of the func-

tions necessary to load and type-check the automaton types, initialize the simulation, interpret

automaton state information, evaluate expressions in the transition relation, and monitor the

set of enabled classes in order to produce executions of an I/O automaton system. The simu-

lator provides a choice of scheduling options, as well as services for checking state invariants,

updating state information on the display, rolling back executions, and generating trace files.

The purpose of this chapter is to impart an understanding of the organization of the simu-

lator, and of how the simulator interacts with the other components of the Spectrum system.

Such an understanding is helpful not only for programmers interested in extending the ca-

pabilities of Spectrum, but also for Spectrum users interested in learning how the simulator

generates executions of their automaton systems. It is also instructive to see how the simple

semantics of the Spectrum programming language (and the I/O automaton model) facilitate a

clean simulator implementation.

The input to the simulator consists of a collection of automaton types and a configuration.

The automaton types are presented to the simulator in the form of a text file containing code

written in the Spectrum programming language. The configuration is made available to the

simulator as a data structure that is shared with the user interface. In addition to these

59

60 CHAPTER 4. THE SPECTRUM SIMULATOR

two pieces of input, th, ulator may receive input from the user during the course of the

simulation session. In t1, chapter, we concentrate on the functionality and implementation of

the simulator. Since all user interaction with the simulator is mediated by the user interface,

we leave that discussion for the next chapter.

We organize our presentation of the simulator around its four main logical components, the

loader, the interpreter, the execution loop, and the scheduler. The loader parses and type-checks

the automaton types file, and organizes the automaton type definitions into data structures that

are used by the interpreter. The job of the interpreter is to evaluate expressions represented as

automaton types data structures. These expressions may be used to evaluate preconditions to

determine the set of classes with enabled actions, determine the argument values for actions,

determine the set of participants in a given action, effect the state transitions of automata, and

check state invariants. The interpreter contains implementations for all of the built-in operations

for the data types in the language. The interpreter is called on to evaluate expressions at the

discretion of the execution loop. The execution loop controls the entire sequence of events that

take place in an execution, from initialization to termination detection. In short, the execution

loop manages the simulation of each event in an execution. The fourth component of the

simulator is the scheduler. The scheduler maintains a list of the classes containing enabled

actions, and is called on by the execution loop at each step in the execution to choose the next

class to be given a turn, according to the selected scheduling algorithm. We now present each

of the logical components of the simulator in detail.

4.1 The Loader

As we have said, the job of the loader is to parse an automaton types file and construct the

data structures that represent the types in that file. It parses data type declarations, action

type definitions, and automaton type definitions, and checks for syntax errors and type errors

in all three. All of this is accomplished in a single pass through the automaton types file.

Upon parsing a data type definition, the loader builds a data structure to represent that

type. In the case of DATA declarations, the loader keeps a data types table that associates data

type names with pointers to their corresponding data type structures. Data types structures

are used by the loader not only to represent declared data types, but also to represent automaton

4.1. THE LOADER 61

state definitions, data *s for the return val, f functions, the data types of class parameters,

and the data types oi ,antified variables. These data structures are used in the loader for type

checking, and are used extensively by the interpreter in order to determine the proper treatment

of arguments to generic functions.

Just as the loader creates a data types table to associate data type names with data type

structures, it also creates an action types table that associates each action type name with a

pointer to a data structure representing its argument type. For each action type, the action

types table also holds a pointer to a list of all the automaton types having that action type

among its set of input actions. This list is used during simulation to help determine the set of

automata that participate in an event of that type.

The main job of the loader is to parse each automaton type definition and build a data

structure to represent it. Again, the loader creates a table, called the automaton types table,

with an entry for each automaton type containing: the name of the automaton type, the type of

its state, a list of its input actions, a list of its classes, and two lists of expressions corresponding

to the MAINTAIN and INVAPIANT clauses of an automaton types definition. As one would

expect, an automaton type's state definition is is represented as any other data type structure.

Similar data structures are used to represent the signature, classes, and transition relation of

an automaton type.

The loader checks for syntax errors and performs type checking on all expressions. When

a function expression is parsed, the loader creates a data type structure representing the type

of the return value of the function, determined for polymorphic functions from the types of the

arguments. This structure is carried with the expression for further type checking (e.g., when

the expression is an argument to another function) and for use by the interpreter. In addition

to the above checks, the loader enforces restrictions on the various clause types, as shown in

Figure 3-4. For example, attempting to assign to a state component in a precondition causes an

error.1 In general, the loader generates helpful error messages when it encounters syntax errors

(such as undefined variables, functions or tuple components, and extra or missing arguments).

'There is one exception to the rules listed in Figure 3-4: in order to permit certain visualization functions,
the loader does allow the configuration data to be modified in certain special cases. For further information, see
the description of the configuration data functions in the appendix.

62 CHAPTER 4. THE SPECTRUM SIMULATOR

4.2 The Interpy er

The interpreter provides four basic services: determine whether or not any action is enabled

from a given class in a given state, select an action from an enabled class2 in a given state,

determine which automata have a given action as an input, and produce a new state of an

automaton, given its old state and an action in its signature. This is one place where the

simplicity of the Spectrum language (and the I/O automaton model) contribute to a clean

simulator implementation: all of the above functionality essentially boils down to evaluating

expressions. In order to evaluate expressions, the interpreter creates and manipulates data

structures representing values of expressions, state components, and action arguments. These

data structures are similar to those used to represent data types in the loader, but contain the

actual values instead of data type information. In the course of evaluating expressions, no

type errors can occur, since the loader performs static type checking. However, some errors are

still possible, such as division by zero or drawing a random element from an empty set. When

such a situation arises, the simulator generates an error message that indicates the nature of

the error, the name of the action being processed, and the id of the offending automaton.

As we mentioned above, all the functionality of the interpreter is provided by expression

evaluation. In order to determine whether an action of a given type is enabled in the current

state of an automaton, one calls on the interpreter to evaluate the precondition for that action.

Similarly, to assign to the arguments of an action, one asks the interpreter to evaluate the

selection clause for that action. In order to determine the set of participant automata for an

action, one asks the interpreter to check the WHERE clause of that action for each automaton

instance having that action type in its input signature. Finally, to make state transitions,

one asks the interpreter to evaluate the EFF clause of each participant. All such calls to the

interpreter are under the control of the execution loop, presented next.

4.3 The Execution Loop

The execution loop is responsible for controlling the entire simulation. Upon invocation, the

execution loop assumes that the automaton types data structures and configuration data struc-

2Recal that a class is enabled in a given state if some action in the class is enabled from that state.

4.3. THE EXECUTION LOOP 63

tures are already in , -e. Its first task in starting up a simulation is to initialize the data

structures for each of the automaton instances. 3

Recall that each automaton instance in a configuration has an associated automaton type.

Using the definition of this automaton type, the simulator creates a data structure for each

automaton instance in the configuration. This data structure contains: a list of the classes

of that instance, the current state of that instance, and a list of checkpointed states (used

for rolling back the simulation). It should be emphasized that each instance has its own list

of classes, initialized according to the corresponding automaton type definition. Each class

contains the values of its parameters and a bit indicating whether or not it contains an action

that is currently enabled. For each class in the type definition, if the class is defined without

parameters, then a single corresponding class is created for the instance. However, if the class

of the automaton type is parameterized, then the interpreter is called on to determine the

Set of possiblc values fcz cach parameter according to the set expression associated with that

parameter and the configuration data for that automaton instance; then a separate class is

created for the instance for each possible combination of parameter values. When created, the

enabled bit of each class is set to 0 (false).

After all the classes have been created, the interpreter is called to execute the "initially"

action at all automaton instances whose automaton types have that action in their input sig-

natures. This serves to initialize the states of the automata. Following this, each class in the

system is checked to detcrmine whether or not it contains an enabled action. That is, for each

class of each automaton instance, the interpreter is called to evaluate the precondition for each

action in the corresponding class of the automaton type definition. If any action in a class

instance is found to be enabled, then the enabled bit of that class is set to 1 (true). The sched-

uler, to be discussed in the next section, is informed of each class so enabled. This completes

the initialization procedure.

A high-level description of the execution loop is shown in Figure 4-1. At each iteration

through the loop, the scheduler is asked to produce the next class to take a step. (If no classes

contain enabled actions, the simulation terminates.) Then, an enabled action is chosen from

3The user interface reserves space in the configuration data structure for a single pointer to be used for this
purpose by the simulator.

64 CHAPTER 4. THE SPECTRUM SIMULATOR

create the automaton instance data structures and classes
execute the "initially" action at each automaton
determine the set of enabled classes and inform scheduler
while the set of classes containing enabled actions is nonempty

ask scheduler for the next class to perform an output
choose an enabled action from that class
execute the SEL clause to determine the arguments
determine the set of participant automata
for each participant,

produce a new state of that automaton based on the event
check invariants
determine the new set of enabled classes of that automaton
inform the scheduler of updates to the set of enabled classes

update the display, write to the trace file, etc.

Figure 4-1: Pseudocode for the execution loop.

that class. Since we are not required to be fair to the actions within classes, but only to

the classes themselves, we arbitrarily choose the first enabled action in the class. Then, the

selection clause (SEL) for that action is evaluated to determine the action argument. Following

this, the set of participants in the action is determined: for each automaton having that action

type in its input signature, the corresponding WHERE clause is evaluated; if it evaluates to

true, then that automaton is a participant in the action. For each participant, the EFF and

MAINTAIN clauses are evaluated to produce the new state of the automaton. At this point, any

invariants on the state are checked and the execution is interrupted if violations are discovered.

Since the state of each participant may change, the set of enabled classes of each participant is

recomputed, and the scheduler is informed of any changes.

At the end of each iteration, the user interface, presented in the next chapter, is informed

of both the action and the set of participants in order to update the display.4 The simulator

also provides, for the user interface, functions that textually format the data types of the states

of automaton types, the values of the states of automaton instances, and the current action

name with its argument value. In addition, the simulator provides a function that extracts the

values of selected state components of automaton instances in order that the user interface may

41n fact, it is the user interface that requests each iteration of the loop, since the user may wish to interrupt
the simulation in order to study the states of automata, change the visualization, etc.

4.4. THE SCHEDULER 65

update the graphics display to reflect automaton state changes.

Additional features provided by the simulator include the generation of formatted trace

files containing schedules and selected state information, and the ability to back up or advance

the simulated execution to an arbitrary step number. If the trace file option is selected, at

the end of each iteration of the execution loop, the current step number, action name, and

selected state information are written to a file. In the next chapter, we will see how the user

specifies what state information is written to the file. In order to achieve more efficient rollback

of the simulation, the user may specify an autosave interval k, indicating that the state of

the automaton instances and the scheduler should be checkpointed after every k steps of the

execution. When the simulator is requested to roll back (or forward) to step number n, the

simulator reverts to the last checkpointed state prior to step n and then advances the simulation

to that step.

4.4 The Scheduler

It is the job of the scheduler to maintain a list of all classes containing enabled actions, and to

choose the next class to take a step at each iteration of the execution loop. This choice is made

according to a particular scheduling algorithm, selected by the user before simulation is begun.

In the current implementation of the simulator, there is a choice of two scheduling algorithms,

randomized and round robin.

The randomized scheduler makes use of the weights on each of the automaton classes. It

keeps track of the total t of the weights of all enabled classes, and at each step in the execution

selects a class with weight w with probability Z. The round robin scheduler treats the list of

classes with enabled actions as a queue. It always selects the first class in the list and moves

that class to the end of the list. Newly enabled classes are always added to the end of the list.

Recall that the I/0 automaton model's fairness definition requires that if a class continually

contains an enabled action, then eventually an action occurs from that class. According to this

definition, the round robin scheduler guarantees fairness. The randomized scheduler, on the

other hand, only produces fair schedules with high probability.

The way that scheduling is accomplished in Spectrum constitutes a major difference between

the present work and related work in the area of discrete event simulation. In discrete event

66 CHAPTER 4. THE SPECTRUM SIMULATOR

simulation (see Misra [49]), an "events list" is kept for all of the actions that should be simulated,

but have not yet occurred in the simulation. Each event in the system may cause new events

to be added to the events list. An important difference between the events list and the class

list maintained by our scheduler is that no event is removed from the events list until it occurs,

while events in an I/O automaton system may cause actions to become disabled and thus cause

classes to be removed from the scheduler's class list. In general, the semantics of the I/O

automaton model are such that any event may become disabled by the occurrence of other

events.

4.5 Summary

In this chapter, we described the four main components of the Spectrum simulator: the load',r

the interpreter, the execution loop, and the scheduler. The simulator precisely implements the

semantics of the spectrum programming language, and therefore captures the semantics of the

I/O automaton model.

The simulator is extensible in several directions. One way to exploit the modularity of

the I/O automaton model would be to define built-in automaton types that are used by pro-

grams in the same way as user-defined automaton types, but are actually treated differently

by the system in order to perform low-level system functions. For example, one might have a

built-in automaton called a file manager that has input actions OPEN(fn,read/write,id),

GET-STRING(fd,len), PUT-STRING(fd,s,len), and CLOSE(fd), where fn is a file name,

read/write is a boolean value, id is an automaton id, fd is a file descriptor for an open

file. len is an integer length, and s is a string, and output actions RETURN(vid) where v may

be a file descriptor, a character, an OK signal, or an error signal. The actions would have

the usual file operation semantics, and one could write a schedule module specification for this

automaton for use by programmers. However, under the covers, the internal implementation of

the automaton by the simulation system would be different. Rather than executing as an I/O

automaton, input actions of the file manager would cause commands to be sent to a separate

UNIX process to execute the corresponding system call. Upon completion of the system call,

the appropriate output action of the file manager would become "enabled." One might imagine

similar built-in automata to manage other system services such as print queues or even network

4.5. SUMMARY 67

connections, allowing the interaction of Spectrum programs on several machines.

One might also extend the simulator by adding a variety of schedulers. For example. the

deterministic variety might include, in addition to a round robin scheduler, a least-recently-

executed scheduler that gives the next turn to the class that has been waiting the longest to

take a step. The randomized variety might include, in addition to the current randomized

scheduler, those that dynamically change the weights of classes in order to produce "strange"

executions, possibly taking into account the number of steps that a class has been waiting to

take a step. A more radical extension, which would involve language extensions as well, would

be to allow programmers to write their own scheduling algorithm, or to provide "hints" to

the scheduler. Such hints might be generated by a spectator automaton. taking into account

history information. Such algorithm-specific scheduling could be used in an adversarial way, to

try to generate executions that are incorrect or have poor performance. In Chapter 6, we will

consider still other possibilities for improvements in the scheduling mechanism, including user

intervention and a real-time scheduler.

As another improvement to the simulator, we suggest an optimization for updating the

set of enabled classes at each iteration through the execution loop. Since action preconditions

typically do not involve all the state components of an automaton, and since each state transition

typically does not change all the state components of an automaton, we suggest the following.

Let the loader mark each precondition with a concise representation (a bit vector, say) of

the state components on which it depends. Then, when an automaton takes a step, compare

the state components that have changed to this bit vector for each precondition, and only

reevaluate those preconditions that depend upon changed state components. This optimization

requires a small amount of additional storage to hold the current values of the preconditions for

each automaton, but, depending on the algorithm being simulated, could result in a significant

savings in simulation time.

In this discussion, we have identified some possibilities for extensions and improvements to

the simulator that are largely independent of the language and the user interface. In Chapter 6,

we will discuss possible extensions to the Spectrum Simulation System that involve all three

system components.

68 CHAPTER 4. THE SPECTRUM SIMULATOR

Chapter 5

The Spectrum User Interface

This chapter describes the user interface of the Spectrum Simulation System. The user interface

has two purposes. It is used to build configurations of automaton systems, and to control

simulation and visualization of those systems.

To simulate an algorithm in Spectrum, one first specifies the various automaton types of the

system using the Spectrum language. Then, one graphically constructs a system configuration

(of the sort described in Section 3.2). In configure mode, the user interface provides tools for

building and editing a system configuration. Icons of different shapes are used to represent

the different automaton types. In configuring I/O automaton systems, one uses the mouse

to create instances of automaton types, connect them with directed edges, and arrange them

spatially. Other editing options include assigning names to automaton instances (apart from

the system-supplied automaton id), deleting instances and edges, and changing the type of

an instance. Also, one may undo and redo modifications to the configuration. An important

configuration option is the ability to build new automaton types by composing others. All of

the above editing options are available for creating composed types, as well.

Having specified a set of automaton types and a configuration, one can run simulations

of the I/O automaton system in simulate mode of the user interface. As actions occur in the

system, participating automata are highlighted and state changes are displayed using color and

text. In order to provide flexible exploration of algorithms, the choice of state components to

be represented as colors may be changed during simulation. Also, one can view the simulation

at various levels of detail by selectively opening up windows onto the automaton instances at

69

70 CHAPTER 5. THE SPECTRUM USER INTERFACE

any level in the composition hierarchy. To facilitate close study of algorithms, the user interface

allows one to invoke special simulator functions. For example, one may roll back or advance the

execution to any arbitrary step number, and may generate a trace file containing the schedule

(sequence of actions) of the execution and selected state information. Errors, such as violations

of local state invariants, interrupt the simulation so that the user may explore possible causes.

The interface is written in standard C [34] on top of the XlI window system [56] and requires

four color planes. The current implementation runs on DEC Microvaxes. A three-button mouse

is used for most interface commands.

5.1 Overview of the Spectrum Interface

The main window of the Spectrum interface consists of, from top to bottom, a banner, a pulldown

menu bar, a configuration area, a set of three menus, and a message area. The left edge of the

banner shows the name of the automaton types file currently loaded into the simulation system,

and the right edge of the banner shows the name of the configuration file that was last loaded.

The puildown menu bar contains three entries, "SET UP," "CONFIGURE," and "SIMU-

LATE." At all times, one of the latter two entries is highlighted to indicate whether the interface

is in configure mode or simulate mode. The set up menu is used for file management, and the

simulate menu for selecting among various simulation options, such as the choice of a scheduler.

The configure menu is intended to be used for special-purpose configuration options, such as

enforcing acylicity in the instance graph when this is a desired topology assumption. However,

the configure menu is unused in the current implementation. The largest area of the main win-

dow, the configuration area, shows the configuration currently loaded into the interface. Undo

and redo buttons are available at the upper left of the configuration area.

The three rectangular areas near the bottom of the screen are, clockwise, the types menu,

the edit menu, and the color spectrum. These are explained later. The message area across

the bottom of the main window is used for providing textual information to the user, and for

keyboard interaction.

In addition to the main window, various auziliary windows may be created. In configure

mode, auxiliary windows are used to create composed types and to set up algorithm visualiza-

tion. In simulate mode, they are used to display automaton state information. We will describe

5.2. CONFIGURE MODE 71

these in detail later in the chapter.

5.2 Configure Mode

Recall that a configuration specifies, for each automaton in the system, the type of that automa-

ton, a unique system-supplied identifier and a user-supplied name, a set of adjacent edges in a

directed graph, and a parent in the composition hierarchy. In configure mode. the Spectrum

interface provides tools for creating and editing configurations graphically. One may also spec-

ify "summary mappings" in configure mode; these mappings associate the colors of automaton

instance icons with the values of the state components of thoe instances. Summary mappings

are specified in configure mode in preparation for visualization of algorithm executions. How-

ever, one is free to change summary mappings during simulation, as well. The remainder of

this section describes the options available in configure mode.

5.2.1 The Types Menu

In the Spectrum interface, automaton types are represented graphically as different shapes.

The types menu near the bottom of the main window contains a row of icons, each available

to represent a different automaton type. At any time, exactly one entry of the types menu is

selected, shown as a filled polygon. The selected entry is used for the "create" and "change

type" edit options (see Section 5.2.3). One can assign a name to each icon in the types menu; if

an icon's name matches an automaton type definition in the currently loaded automaton types

file, then that icon is used to represent automata of that type.

Any entry in the types menu may be "opened," causing the creation of a new window. The

upper right of the new window contains the icon and name of the opened type. If the name

of the menu entry matches the name of an automaton type defined in the currently loaded

types file, then the new window displays, in formatted text, the data type of the state of that

automaton type. Otherwise, the new window is used for creating (or modifying) a composed

type (see Section 5.2.5). In either case, the new window may be used to define summary

mappings (see Section 5.2.6).

72 CHAPTER 5. THE SPECTRUM USER INTERFACE

5.2.2 The Edit Menu

Almost all modifications of the configuration are accomplished using the options in the edit

menu, located near the bottom right of the main window. Using the edit menu options, one

can create automaton instances, delete or move them, or change their types. In addition.

one can use the connect and disconnect options to create and delete directed edges between

automaton instances. Edit options are useful not only for specifying a configuration, but also

for creating natural spatial arrangements of the automaton instances so that simulations may

be more easily comprehended. At any given time, exactly one entry in the edit menu is selected:

this entry is highligiaed ia a special color.

Since an edit option remains selected after its use, one may repeatedly use an edit option

without returning the mouse to the edit menu. For example, one can delete many automaton

instances by simply selecting delete, and then choosing each instance to be deleted. The edit

menu options are discussed further in the following sections.

5.2.3 Automaton Instances

To create an automaton instances of a given type, one selects the create option in the edit menu

and the desired automaton type in the types menu, and then positions the desired instances in

the configuration area. To delete automaton instances, one selects the delete edit option and

chooses the instances to be deleted. The edit options for moving and changing the type of an

instance work similarly.

When an automaton instance is created, it is assigned a unique automaton identifier, which

appears below the icon as its name. One may rename an automaton instance, but changing the

name of an automaton does not change its unique identifier. Both the system-assigned identifier

and the user-defined name are accessible in automaton type definitions (see Chapter 3).

If an automaton is an instance of a composed type (see Section 5.2.5), it may be "opened" in

configure mode. One may rename the components of an instance of a composed type. However,

no other modifications of instance components are permitted, in order to ensure consistency

among all automata of the same type. For example, one cannot create a new component in just

one instance of a composed type.

5.2. CONFIGURE MODE 73

5.2.4 Configuration Edges

Automaton instances may be connected in a directed graph. The edges are useful for break-

ing symmetry, defining communication patterns, or establishing other relationships between

automata. The sets of incoming and outgoing edges of automaton instances are accessible in

automaton type definitions (see Chapter 3).

To place edges between pairs of automaton instances, one selects the connect edit option

and selects the pair of automaton instances for each desired edge. A directed edge is formed

from the first instance in each pair to the second. To delete an edge, one selects the disconnect

edit option and selects the two endpoints in the same way.

5.2.5 Creating Composed Types

It is often desirable to define an automaton type that is the composition of several other automa-

ton types. For example, one might model an asynchronous system by associating a message

buffer automaton with each user process automaton. Rather than explicitly creating each pair

of automaton instances, one might define a new automaton type that is the composition of a

user process automaton and a message buffer automaton.

To create a composed type, one assigns the desired type name to an unused shape in the

types menu and opens that type, as described in Section 5.2.1. The new window created may be

used just like the configuration area in the main window. To create the composed type described

in the preceding paragraph, one would use the create edit option to create one "instance" of the

user process automaton type and one "instance" of the message buffer automaton type inside

the window for the composed type. Each instance of the composed type is then the composition

of instances of those two automaton types.

All of the edit menu options are available for creating composed types. For example, one

may create a composed type containing several "instances" of another type arranged in a

particular directed graph. One may create instances of an automaton type before that type is

(fully) defined. Whenever a composed type is defined or modified, the changes are immediately

reflected in all instances of that type. Hierarchical composition is supported; components of

a composition may be compositions themselves. However, it is illegal to create recursive type

definitions. For example, if type A is the composition of types B and C, then neither B nor C

74 CHAPTER 5. THE SPECTRUM USER INTERFACE

may have A as a component.

5.2.6 Summary Mappings

During simulation, colors are used to display the values of iniportant components of an au-

tomaton's state. One might say that certain state components summarizing the state of the

automaton are "mapped" to colors of the icon representing the automaton. These summary

mappings may be established at configuration time, but may also be changed during simulation.

Each instance icon is divided into two parts, a border and a center. One may map a single state

component to both the border and center, or may map a different state component to each.

Both integer and boolean state components may be mapped as colors. The MAINTAIN clause

(see Chapter 3) is useful for updating state components that are used in summary mappings.

Summary mappings are established for an entire automaton type, rather than on an instance

by instance basis. This tends to make the visualization easier to understand. When setting

up summary mappings for a composed type, one may choose the middle or border of any

component as the state component to be mapped out. For example, if A is the composition of

B and C, one may wish to map the middle of B to the middle of A, and map the border of C to

the border of A. Then, during simulation, whatever state component is mapped to the border

of C will also map to the border of A.

5.2.7 Undo and Redo

All of the functions provided in the edit menu, plus changes to summary mappings, may be

"undone" by using the undo button in the window where the modification was performed.

For example, to undo a modification to a composed type, one uses the undo button in the

window for that type. The undo feature is "infinite," meaning that one may undo changes all

the way back to the beginning of the current session. (A new session begins when the interface

is started and whenever a configuration file is loaded.) A "redo" option is available for redoing

modifications just undone.

5.2. CONFIGURE MODE 75

5.2.8 Saving and Loading Files

The setup menu option load types is used to load an automaton types file written in the Spectrum

programming language. The simulator does parsing and type-checking, and sets up the

appropriate data structures for the interpreter. If syntax errors, type errors, or other problems

occur while reading the file, an error message appears at the bottom of the main window and

a description of the errors is output by the simL.-ator. (See Chapter 4 for details.)

The save configuration option in the setup menu is used to save a configuration in a file for

a later session. The entire configuration, including composed types nd summary mappings.

is saved in the file named. The load configuration option is used to load a previously saved

configuration. On loading a configuration, the interface checks that the summary mappings

in the configuration file properly correspond to the automaton types currently loaded. For

example, it checks that if the first state component is used in the summary mapping, then

that component has type integer or boolean. Each summary mapping that does not match up

properly is discarded. Since these compatibility checks are made only when a configuration file

is loaded (and not when an automaton types file is loaded), one must load the types file before

creating a configuration or loading a configuration file.

The fact that automaton types files and configuration files are saved independently means

that a given types file can be used with many configuration files, or many types files with a given

configuration file. When the latter arrangement is used, one may need to change the summary

mappings for different types files when the automaton state components have different types.

5.2.9 Data Structures

In configure mode, the user interface builds and maintains data structures to represent the

system configuration. Its main data structure is a table indexed by automaton id that holds

the configuration data relevant to that automaton (its type, its user-supplied name, its parent in

the composition hierarchy, a list of the automaton id's of its components (if it is an instance of

a composed type), and lists of its incoming and outgoing edges), as well as information relevant

to the display of the icon representing that automaton (the id for the X window containing the

icon, the icon's color(s) and position in that window, and the id for the associated auxiliary

window if one has been created). In addition, for each automaton instance, space (for a single

76 CHAPTER 5. THE SPECTRUM USER INTERFACE

pointer) is reserved for the simulator to associate state and class information with each instance.

Similar information is kept for automaton types, and in particular for composed types. In

simulate mode. configuration information (including the pointer reserved for the simulator) is

made available to the simulator through a narrow interface of procedure calls and macros.

5.3 Simulate Mode

Simulate mode is used for running simulations. In this section, we describe how the interface

is used to invoke the various features of the simulator. For details on the simulator itself, see

Chapter 4. We begin by discussing the options available in the simulate menu, and then

describe what happens in the interface during a running simulation.

5.3.1 The Simulate Menu

With the exception of the scheduling options, all options in the simulate menu are available in

simulate mode. (Since it is not permissible to change schedulers in the middle of a simulation,

the scheduler must be selected prior to entering simulate mode.) The following options are

available in the simulate menu.

Simulation Control Options: If single step is selected, the user advances the simulation

one step at a time. If continuous is selected, the simulation runs to completion or until

it is interrupted by the user or by an invariant violation.

Scheduling Options: The choices are randomized or round robin. See Chapter 4 for a

description of these schedulers.

Set Pause: Using this option, one can specify a pause (in seconds) between the steps of a

continuous simulation.

Set Skip: This option is used to instruct the interface to update the display only after every

n steps, where n is the skip value chosen.

Autosave: The user may set an autosave value of n, which causes the simulator to checkpoint

the state of the simulation every n steps. A low (non-zero) value of n makes undo and

5.3. SIMULATE MODE 77

redo faster, but slows down the simulation (see Section 5.3.4). If the autosave value is

zero, then autosave is turned off.

Trace: This option may be used to specify a trace file. See Section 5.3.6 for a description of

what is written to a trace file.

5.3.2 The Running Simulation

On entering simulate mode, the automaton instances are initialized and the simulation is paused

just before the first step. As the simulation runs, the display is updated as follows. After each

step of the execution, provided that the simulator is in single-step mode or that the pause

value is at least one second, the borders around the set of automata involved in that step

are highlighted (red for output and blue for input) and the action name with its argument

value is displayed in the message area. In addition, the colors of the automaton instance icons

are updated according to the summary mappings, and any open state windows are updated.

The icon colors and state value displays are updated in both single-step and continuous mode,

regardless of the pause value. However, when the skip value is nonzero, all display updates take

place only after the specified number of steps. Similarly, no display updates take place for the

intermediate states that occur while the simulation is being advanced or undone to a particular

step number, but the display is updated once the desired state has been reached. Whenever

the simulation is paused, it is possible to:

@ resume the simulation,

* abort the simulation and return to configure mode,

* select options from the simulate menu (except changing the scheduling option),

open entries in the types menu to change the summary mappings,

* open automaton instances to view their components (in the case of compositions) or to

view the values of their state variables,

* roll back the simulation to some earlier step number, or

* advance the simulation to some later step number.

78 CHAPTER 5. THE SPECTRUM USER INTERFACE

We have already discussed the simulate menu options (Section 5.3.1) and summary mappings

(Section 5.2.6). In the following sections, we discuss viewing automaton instance state variables,

rolling back and advancing the simulation, error messages, and trace file.

5.3.3 State Windows

Taking advantage of the structure provided by I/O automaton composition, the Spectrum in-

terface allows one to "look inside" an automaton to see its components. This allows one to view

algorithm simulations at different levels of detail. During simulation, any automaton instance

may be opened. If the automaton is an instance of a composed type, then the auxiliary window

created contains its components, colored according to their summary mappings. However, if

the automaton is an instance of a type explicitly defined in the automaton types file. then the

window created, called a state window, contains a textual display of the values of the state

variables. As described earlier, all state information (whether graphical or textual) is updated

as the simulation runs.

5.3.4 Execution Rollback

In understanding an algorithm, it is often useful to observe the events that led up to a particular

state. Therefore, the simulator provides the ability to roll back the simulation to a particular

step. Like all simulator functions, the rollback/advance option is controlled with the user

interface, which allows the user to select a particular step number to return to (or advance

to). To support this feature, the simulator checkpoints the states of the automata, the

scheduler, and the seed of the random number generator at the beginning of the execution

and periodically according to the interval selected with the autosave option in the simulate

menu. If the checkpoints occur frequently, rollback will be fast. On the other hand, very

frequent checkpointing wastes memory space and slows down the simulation. One may change

te checkpoint interval whenever the simulation is paused.

5.3.5 Error Messages During Simulation

Two different types of error messages may occur during simulation. Both are reported on the

Unix standard error file and in the trace file (if one is open). The first type of error is program

5.4. SUMMARY 79

error, such as an attempt to select a random element from an empty set, or an attempt to divide

by zero. The second type of error is the violation of a specified invariant of an automaton. In

either case, the automaton name and id at which the error occurred. along with the action

name and arguments, are reported with the error message. Violation of an invariant causes the

simulation to become paused so that the user may examine the state of the system and roll

back the simulation in order to discover the source of the error.

5.3.6 Trace Files

If a trace file is specified, the following information is appended to it by the simulator. At the

start of the simulation, the seed for the random number generator is recorded in the trace file

so that the execution may be reproduced later. After each step, the step number and the action

name (with its arguments) are written. Whenever a state window is opened or updated, the

values of the state variables of that automaton are recorded in the trace file. In this way, the

states of the automata of interest are recorded automatically without cluttering the trace file

with extra state information. All error messages (both program errors and invariant violations)

are written to the trace file. Finally, whenever the execution is rolled back or advanced to some

particular step number, that information is also recorded.

5.4 Summary

The Spectrum user interface provides features for constructing system configurations, creating

summary mappings, and controlling and observing algorithm executions. An important pur-

pose of the Spectrum user interface is to provide support for experimentation with algorithms.

Configuration files are created, edited, and saved independently of automaton types files so

that one may use many different configurations with a given set of automaton types, and vice

versa. Also, the summary mappings used for algorithm visualization are created easily and

may be changed easily during algorithm simulation for maximum flexibility in observing algo-

rithm executions. In addition, the compo6ition hierarchy is exploited to allow users to observe

algorithms at various levels of detail.

In Chapter 6, we will discuss a number of ways in which Spectrum's support for experimen-

80 CHAPTER 5. THE SPECTRUM USER INTERFACE

tation could be enhanced. In addition, Gupta [25] makes a number of specific suggestions for

improving user interaction in Spectrum.

Chapter 6

System Evaluation

In the previous chapters, we presented the three main components of the Spectrum Simulation

System: the programming language for defining automaton types, the simulator for generating

executions of automaton systems. and the user interface for building automaton system config-

urations and controlling simulation and visualization. In each chapter, we pointed out features

of the design that were motivated by the design goals outlined in Chapter 1.

In this chapter, we use these design goals to evaluate the system, as a whole. First, in

Section 6.1, we compare Spectrum with a number of related languages and simulation systems.

Then, in Section 6.2. we conduct a thorough evaluation of Spectrum in terms of the design goals,

taking into account the comparisons drawn in Section 6.1, as well as our own experience using

Spectrum and the experiences of other Spectrum users. For each design goal, we review those

aspects of the system that were designed to help achieve the goal, and consider how successful

these actually were. In the course of this evaluation, we suggest a number of possible directions

for further work. The evaluation will motivate the research presented in the remaining chapters

of the thesis.

6.1 Comparisons with Related Systems

In this section, we survey several languages and systems that are based on formal models

and support the study of concurrent algorithms. These are not all designed for simulation

and visualization of distributed algorithms, but are sufficiently related that one might imagine

81

82 CHAPTER 6. SYSTEM EVALUATION

using them (or extending them) for that purpose. The languages and systems we discuss are

Occam [32, 53], Unity [14], Statemate [26], and DEVS [60].

6.1.1 Occam

The Occam programming language [32, 53] is based on Hoare's Communicating Sequential

Processes (CSP) [31], discussed briefly in Chapter 2. In Occam, each process has a sequential

program, which may attempt to send or receive data over channels connected to other processes.

A process may wait to send or receive data at multiple channels at a time. The channels are

synchronous. meaning that the data transfer occurs simultaneously at both ends of the chan-

nel, only after both the sender and the receiver are at appropriate points in their programs.

(That is, inputs are not always enabled.) Thus, a process that is not prepared to receive data

may block a process that is prepared to send the data. This makes Occam rather unnatural

for describing distributed algorithms in which the individual processes are meant to act au-

tonomously. Also, Occam does not have a general handshake mechanism, but instead limits

synchronous communication to pairs of processes. Therefore, it is impossible to write an atomic

broadcast as a primitive operation in Occam. Pairwise communication also prevents one from

constructing monitoring devices, like Spectrum's spectator automata, to monitor interprocess

communication in Occam. However, other languages based on CSP do permit such monitoring

(for example, see [55]), but one must be careful to ensure that the monitoring process does not

interfere with the computation by blocking events from occurring.

The sequential process control flow provided by Occam is convenient for describing algo-

rithms that are inherently sequential. However, it can be cumbersome for describing distributed

algorithms in which a given process may interact with other processes at different stages of the

protocol. This is because one must continually wait on multiple channels, and then act accord-

ing to the type of message received. In Spectrum, a more general control flow mechanism is

provided. The state changes required for each kind of input action are expressed in isolation,

and arbitrary predicates on the state (instead of sequential control flow constructs) are used

to determine whether or not each output action is enabled individually. For convenience in de-

scribing algorithms in which each process thread is sequential, it might be interesting to design

a sugared version of the Spectrum language that would build sequential control flow constructs

6.1. COMPARISONS WITH RELATED SYSTEMS 83

on top of the precondition mechanism. A preprocessor for this language could introduce extra

control variables (program counters) into the automaton state that would be used as precon-

ditions on locally controlled actions. Such control flow constructs would be used for describing

the activities of each class of an automaton, and input actions would be unaffected.

The system configuration in Occam is described within the code of the algorithm. This

results in a poor separation of the algorithm from the system configuration, but does allow for

dynamic process creation, useful for describing some important kinds of distributed systems.

We will return to dynamic process creation later in the chapter.

6.1.2 UNITY

The UNITY programming model was described briefly in Chapter 2. Recall that a UNITY

program consists of a set of statements that access a global shared memory. At each step in the

(infinite) execution, a statement is selected and executed, such that each program statement is

executed infinitely often. We pointed out that to describe message-passing communication in

UNITY, one declares variables (say, queues) to represent the channels, and writes statements

to modify those variables for sending messages (enqueue) and receiving messages (dequeue).

But since there is no notion of an "input action" in UNITY, receivers must keep polling the

"channels" with dequeue statements in order to become informed of the output of senders. This

is similar to the problem we encountered in Occam, where a receiver must continually wait on

all of its input channels, except that in UNITY the sending process would not be blocked by the

receiver. In Spectrum, it is easier to express message-passing computation primarily because

the underlying model is so well suited for that purpose.

As far as mechanical checking of algorithm executions is concerned, it would not make sense

to consider writing spectator-like devices in the UNITY programming language. This is because

the entire state is shared, and there is no notion of a shared action. However, it would be quite

sensible to monitor invariants on the system's global state.

We pointed out in Chapter 2 that modularity is a problem in UNITY because the interfaces

between program modules are not describable in terms of well-defined sets of actions, but only

in terms of the program variables that they access. The closest approximation to composition in

the UNITY model is the union operator, which simply takes the union of the sets of statements

84 CHAPTER 6. SYSTEM EVALUATION

of the individual modules to form one large program. One could use this operator to build

up complex programs and experiment with the programs by substituting modules as in Spec-

trum. However, the value of doing this in UNITY is limited because the distinctions between

components become blurred in the final program; the components all share a single state space

and do not have their own action signatures. For example, several different components might

have the same assignment statement; in the union of those modules, one would not be able to

tell which component was "responsible." In fact, it does not even make sense to speak of this

in UNITY because the identity of an individual component is lost when the union operator is

used.

Another operator provided in UNITY for combining programs is the superposition operator.

This is useful for constructing layered systems in which higher layers may observe (but not

modify) the variables used by the lower layers. We will return to superposition later in this

chapter, and again in Chapter 8.

Two similarities between UNITY programs and Spectrum automaton type definitions are

worth mentioning. There is an INITIALLY section in a UNITY program that defines the initial

values of variables. It is written as a set of equations, where each variable appears at most once

on the left hand side of an assignment. It must be possible to compile the equations into a

sequence of assignment statements such that all the variables become initialized. This bears

some resemblance to Spectrum's initially action, except that the initially action is written just

as any other input action: it is not constrained to initialize all the variables, and is allowed to

assign variables multiple times in the course of performing the initialization. UNITY has an

ALWAYS section whose purpose is to maintain pseudovariables, like Spectrum's MAINTAIN

clause. Again, the ALWAYS section is written as a set of equations, while the MAINTAIN

clause is a sequence of assignments. A further restriction on the ALWAYS section is that a

variable assigned in that section must not appear on the left hand side of an assignment in

any other part of the program. This restriction guarantees that any equation appearing in the

ALWAYS section is an invariant on the program state.

6.1. COMPARISONS 11ITH RELATED SYSTEMS 85

6.1.3 Statemate

The Statemate system [26] is based on the Statechart model [27, 28] described in Chapter 2.

Recall that Statecharts provide synchronous nonblocking multi-party communication, but allow

a process to receive input events and generate output events in one atomic action; this results

in atomic "chain reactions" that can be difficult to reason about. Statechart programs are

described as hierarchical finite state machines. Unfortunately, the finiteness rules out a large

class of distributed algorithms.

Statemate provides a graphical editor for building statecharts, a statechart simulator, and

automatic translation into Ada and C. Since statecharts are finite state machines, Statemate

can also provide exhaustive testing. Statecharts do not separate the algorithm description

from the system configuration; they are one and the same. However, it is relatively easy to

add components to Statecharts in the Statemate system, and the hierarchical structure of

Statecharts allows one to observe system executions at varying levels of detail.

Since a statechart describes a system that makes an atomic state transition in response to

each event from the environment (and does not take steps on its own), it is difficult to use

a statechart to model systems in which there are autonomous processes that may generate

outputs at any time. For example, consider a sender process that makes a request to a data

link process to transmit packets of data. One would like to separate the request event that is

output by the sender process from the packet sending event that is output by the data link

process. However, if the only actions from the environment are the requests from the sender

process, then there is no way (in a statechart) to model a delay between the sender's request

and the corresponding sending event output by the data link layer; they must be treated as a

single atomic step. With I/O automata, one would model the request as an input action to

the data link process and the send as an output action of that process. This seems to be a

more realistic view of what actually occurs in such a system, and allows one to reason about

what might happen between the two events. For example, one might wish to study executions

in which the requests come in spurts at a rate faster than the packet sends go out. One could

simulate such a delay in the Statemate system by having the environment generate a separate

event (like a clock tick) that would result in the corresponding data link send, but this clutters

up the external interface and puts the environment in control of a delay that is logically internal

86 CHAPTER 6. SYSTEM EVALUATION

to the system.

In addition, since each state is drawn explicitly, large data structures or variables with

large domains (such as message buffers or counters) are placed either in the environment or

the Statemate database, where they are not visible as part of the program state. For example,

a timer cannot be modelled explicitly in the system. One can write start-timer and stop-

timer events that act as signals to some device in the environment of the statechart, and write

a timeout event that comes from the environment when the time has expired. But a more

natural approach is to model the timer as an explicit system component that has start-timer

and stop-timer as inputs, takes internal steps to decrement the counter, and issues timeout as

an output. This appears not to be possible with Statecharts, but is easy to accomplish using

I/O automata. In general, it is often convenient to model distributed algorithms as closed

systems of autonomous processes, but this is not possible using the Statemate approach.

One main advantage of the Statemate system is the graphical programming approach. In

Spectrum, there are graphical configuration and visualization tools, but the language is textual.

An interesting possibility for further work would be to design a graphical programming language

for a restricted class of I/O automata. Such a language might not support the infinite state

capability of I/O automata, but could allow system components to take steps autonomously.

6.1.4 DEVS

DEVS [60] is an object-oriented system in which system components (called models) have

input and output ports that may be coupled in a hierarchical fashion. Unlike Occam, DEVS

does allow a given output to be directed to multiple destinations. However, in any port-based

interconnection mechanism, an output cannot be transparently directed to different destinations

depending on its value. In Spectrum, action names are used (instead of ports) to relate the

outputs of one module with the inputs of others. Spectrum's is a more general mechanism.

For example, in Spectrum an output may be directed to different destinations depending on

its value. One could attempt this in DEVS by creating a different port for each destination,

but this would require that the module producing the output know the relationship between

values and destinations. To avoid requiring that the output module have this knowledge, one

could create a separate port for each possible value, but this would create an overwhelming

6.2. DESIGN GOALS REVISITED 87

configuration task.

As in any discrete event simulation system, scheduling in the DEVS simulator is based

on global time. This allows one to describe and analyze real-time systems, as well as study

the time performance of ordinary asynchronous algorithms. However, the algorithms to be

simulated must explicitly manipulate times to keep track of process step time, even if their

actions do not depend on the amount of time elapsed. One would like a better separation of

the algorithm from the timing concerns. That is, rather than cluttering up the algorithms with

timing details, one would like to specify timing constraints on the processes of the system, and

then allow the simulator to handle the rest "under the covers." Later in this chapter, we will

discuss such an approach for extending Spectrum for the study of real-time systems.

6.2 Design Goals Revisited

Having compared Spectrum with a number of other languages and systems, we now evaluate

the system in terms of the design principles outlined in Chapter 1. Recall that the design

principles were as follows:

* The design must be faithful to a formal model.

* The language should be natural for expressing a large class of distributed algorithms.

* The system should encourage experimentation with algorithms.

* The design should achieve economy and integration.

We now consider Spectrum in terms of each of these principles and the corresponding subgoals

identified in Chapter 1.

6.2.1 Spectrum and the I/O Automaton Model

The Spectrum programming language provides mechanisms for defining the signatures, states,

initial states, transition relations, and partitions of I/O automata. The user interface provides

facilities for building up complex systems of I/O automata using standard I/O automaton

composition, preserving the essential process structure of the components in the composition.

88 CHAPTER 6. SYSTEM EVALUATION

And the Spectrum interpreter generates executions of these system. that are consistent with

the semantics of the 1/0 automaton model. However, Spectrum provides what should properly

be called a subset of the features of the I/O automaton model. Due to physical limitations

of the digital computer, we were forced to abandon the nondeterminism present in the formal

model and replace it by randomization at several places in the system design. Also due to

practical considerations, the infinite collections of automata allowed in the formal model are

not supported in Spectrum. Finally, the distinction between internal and output actions in the

I/O automaton model was dropped in the Spectrum design. Each of these design decisions was

mentioned in earlier chapters, but we now consider them and their implications in more detail.

The nondcterminism present in the I/O automaton model is not of the usual complexity-

theoretic flavor. That is, we do not speak of I/O automata "guessing" solutions to problems

a-id then verifying the answers deterministically. And we do not speak of an input as being

"accepted" by an I/O automaton if there exists some computation path that leads to an "accept

state." Ins.ead, nondeterminism is used in order to make algorithms and their correctness

proofs more general. That is, rather than present a particular deterministic implementation of

an algorithm, one describes a (nondeterministic) i/O automaton that, in some sense, embodies

all such deterministic implementations. Therefore, the decision to substitute randomization

for nondeterminism is a legitimate one. By carefully introducing randomized functions in the

language (such as selecting a random number or choosing a random element from a set) and

providing a randomized scheduler, we are able to support algorithm descriptions that are quite

general. Furthermore, we have found that the random executions generated by Spectrum are

quite useful for gaining insight into how an algorithm works, finding errors in an algorithm, and

learning about an algorithm's performance.

Even so, random executions are produced according to some probability distribution by

a particular random number generator. So, "strange" executions, such as those that might

lead to starvation of a contender in a mutual exclusion algorithm, are unlikely to arise in

executions generated by Spectrum, unless one deliberately skews the probability distribution

by placing appropriate relative weights on the automaton classes. One might consider adding

mechanisms to the simulation system, such as user-defined schedulers or dynamically changing

class weights, in order to generate a wider variety of system executions. Still, one cannot possibly

6.2. DESIGN GOALS REVISITED 89

hope to automatically generate all of the strange executions that could cause an algorithm to

fail. Simulating algorithms in the Spectrum system can provide help in understanding and

debugging the algorithm, but unless one can generate all possible executions of an algorithm,

it will always be necessary to construct a formal correctness proof. This is why it is so valuable

that the semantics of the Spectrum language is consistent with that of the formal I/O automaton

model.

In Spectrum, the configuration is static. That is, all automaton instances are in existence

at the beginning of the execution. The limitation of a static finite collection of automata (and

a finite number of classes in the partition) is a problem when one wishes to consider algorithms

that involve dynamic process creation. In the I/O automaton model, a system consists of a static

collection of components, but the number of components may be infinite. Therefore, one can

model dynamic process creation by assuming that all possible processes exist at the beginning

of a computation and then "waking them up" as the algorithm proceeds. (For examples of

this, see [41, 43] and [40].) Since supporting an infinite collection of automata is a physical

impossibility, an interesting direction might be to extend Spectrum with mechanisms to support

dynamic automaton creation.

The decision to omit internal actions from the Spectrum language was made only in order to

simplify the initial design. Adding internal actions to the language would be a simple matter.

An interesting related extension would be to support a hiding operator in the user interface.

Such an operator would be useful additional support for viewing algorithm executions at various

levels of detail, and also for restricting trace files to contain only the actions of interest.

6.2.2 Expressive Power

Clearly, the choice of the formal model on which a language is based makes a great impact

on the expressive power of that language. Because of its separation of inputs and outputs,

its treatment of fairness, and its compositionality properties, the I/O automaton model is

particularly well suited for describing a wide clasb of distributed algorithms, and has been the

basis for much research in that area. By making the I/O automaton model the theoretical basis

of the Spectrum system, we were able to take advantage of the expressive power provided by

that model. Virtually any message-passing algorithm may be expressed as an I/O automaton.

90 CHAPTER 6. SYSTEM EVALUATION

Spectrum's rich set of data types and built in operators make it easy to express a wide variety

of distributed algorithms. And since one can model the communication system explicitly as

a separate I/O automaton, it is easy to express (and simulate) algorithms that have widely

varying assumptions about the underlying network.

However, the expressive power of the Spectrum language could be improved in some areas.

Although the I/O automaton model provides excellent support for modelling message-passing

algorithms, many of the important asynchronous concurrent algorithms are described using

shared memory. And in some cases one might wish to use both shared memory and message

passing to describe different parts of an algorithm. In Chapter 7, we present extensions to the

I/O automaton model for describing shared memory algorithms and propose related extensions

to the Spectrum Simulation System.

Another property of the I/O automaton model is that system components cannot observe

the private states of other components. But sometimes one wishes to describe distributed

algorithms as layers of modules such that the higher layers are allowed to observe (but not

modify) the variables of the lower layers. One layering mechanism, called superposition, is

defined by Chandy and Misra for the UNITY programming language (141. It is essentially a

program transformation that adds a layer on top of a program by introducing a set of higher

level variables and code that makes use of them. The transformation is required to preserve all

the properties of the underlying program. In Chapter 8, we extend the I/O automaton model

to permit superposition of program modules and propose related extensions to the Spectrum

Simulation System.

The expressive power of Spectrum for describing distributed algorithms based on message

passing is quite good. However, as we mentioned in Section 3.6, some Spectrum users (partic-

ularly those without prior experience with I/O automata) find that it is difficult to "think" in

the Spectrum language. They find that it is easier to first write algorithms using a higher-level

approach, and then translate them into the Spectrum language. This is related to the issue of

expressive power, but has more to do with ease of programming. It appears that most of the

problem is due to the syntax of the language, which lacks infix operators. A sugared version of

the language with infix operators might allow programmers to write their algorithms directly in

the language. Additional language features that may help here are the control flow constructs

6.2. DESIGN GOALS REVISITED 91

discussed in Section 6.1.1 and a syntax for assigning to all the components of a tuple at once

(for example, s.tuple - <s.comp1,s.comp2>).

Other mechanisms that would add useful expressive power to the language include additional

built-in data types and new operations for the existing ones, as well as the ability to create

user-defined data types with their own operations. In addition, it would be useful to access

systems services, such as file management and device I/O from within automata. An interesting

way to accomplish this would be to treat each system service as an automaton that is built into

the system, as described in Section 4.5.

6.2.3 Experimentation

Since Spectrum was designed as a research tool, a number of design decisions were made in order

to provide support for experimentation with algorithms. The first step in providing support

for experimentation is to make it easy for the user to concentrate on the relevant deta2!- and

help the user to avoid wasting time. The fact that systems are configured graphically and their

executions are observed visually saves time and effort in setting up and analyzing simulations.

Also, since the Spectrum language is statically type-checked, the loader can detect the "silly

mistakes" in automaton type definitions so that users do not waste time searching for obscure

program errors. The rich set of built-in data types and the fact that the language is interpreted

also serve to shorten the write/simulate/modify cycle. But besides helping to save the user time

in writing algorithms and setting up and running simulations, Spectrum provides a number of

flexible mechanisms that directly address the problem of experimenting with algorithms. We

now review some of these.

An important part of the Spectrum design was the decision to separate the automaton types

and the system configuration. As a result of this decision, Spectrum users can experiment with

a given algorithm in a variety of system configurations. Crucial to making this separation work

is the ability to parameterize an automaton type according to the configuration data. For

example, one can use the edges of the configuration graph to represent communication paths

in a network and parameterize an automaton type on its sets of incoming and outgoing edges.

This automaton type could be instantiated many times in a configuration, each time with a

different number of incoming and outgoing channels. At a more fundamental level, without the

92 CHAPTER 6. SYSTEM EVAL UATION

parameterization mechanism, there would be no way to break symmetry among automata of

the same type.

The summary mappings of the user interface and the MAINTAIN clause of the Spectrum

language work together to provide a simple, yet flexible, mechanism for handling algorithm vi-

sualization. Visualization is useful for debugging algorithms, understanding how they work, and

studying their efficiency. In general, there are two ways to accomplish visualization: declarative

and imperative [541. In imperative visualization, one embeds procedure calls in the algorithm

being studied in order to effect changes in the display. At any time in the simulation, the image

on the display is a product of the history of these procedure calls. This allows one to construct

elaborate program animations that are rather difficult to set up and modify. In contrast, the

declarative approach established relationships between state information of the algorithm with

points on the display. With this approach, the animations tend to be simpler, but it is easy to

set them up and to modify them quickly. Furthermore, with the declarative approach it is easy

to to update the display when one rolls back the simulation, since one only need be concerned

with the current state and not the entire history of the execution. Summary mappings use the

declarative approach. As a result, it is possible to set up algorithm visualizations quickly in

Spectrum. and to modify them easily, even during simulation.' In addition, when one wishes

to create special variables to be used in summary mappings, the MAINTAIN clause allows one

to keep those variables up to date without obscuring the rest of the program code. We also

take advantage of I/O automaton composition in the summary mappings mechanism so that

users may observe the states of algorithm executions at varying levels of detail.

The modularity provided through I/O automaton composition is also useful for experiment-

ing with algorithms. One can easily substitute one module for another in the configuration

without having to return to the automaton types definitions. For example, one might write

two versions of a automaton, one that is faulty and one that is not, and then experiment with

the fault tolerance of an algorithm simply by changing the types of automaton instances in the

configuration.

'Currently, it is possible to color the edges of the configuration graph as part of the visualization capabilities of
the system. However, this mechanism is imperative and such visualizations are harder to change. One approach
to making the edge colors imperative would be to associate an automaton with each edge in a configuration and
then use summary mappings.

6.2. DESIGN GOALS REVISITED 93

An important part of experimenting with algorithm is generating many different executions

for them. In Spectrum, there are currently two scheduling algorithms, randomized and round

robin, as described in Chapter 4. The randomized scheduler allows one to assign weights to the

classes in order to simulate some processes running faster than others. One question is whether

these weights should really be part of the automaton type definitions, as they are now, or part

of the configuration. Making them part of the configuration would allow more flexibility in

scheduling, for one might be permitted to change the weights during simulation, just as it is

possible to change summary mappings as the simulation proceeds. For this change, the user

interface might be modified so that each automaton instance had an associated "pop-up" menu

containing a list of its classes and their associated weights, which could be changed at the

keyboard. As a further extension, one might highlight the set of classes containing enabled

actions in the menu. and allow the user to specify, at any point during simulation, which class

should take the next step. Upon selecting a class, the user might be presented with another

pop-up menu containing the set of enabled actions in that class and be permitted to choose

an action (and possibly select its arguments). Alternatively, one might add mechanisms for

expressing algorithm-dependent scheduling rules, such as "if any automaton has fifty messages

in its buffer, then give it priority to take a step." Another means of intervening in simulation

would be to permit users to change the values of automaton state components during simulation,

but this option could lead to chaos in an algorithm unless used conservatively. At the very least,

it would be appropriate to check any declared invariants on the state of an automaton whenever

the user makes changes.

Chapter 3 highlighted two mechanisms for studying algorithms from a correctness proof

point of view: the INVARIANT clause and the spectator. These are useful for experiment-

ing with an algorithm by generating many (or long) executions and mechanically checking for

invariant violations, or violations of the problem specification, or for computing performance

statistics (such as the number of messages generated in an execution). An important point to

remember is that the verification and analysis mechanisms are kept separate from the algorithm

being studied; one need not modify (or clutter up) the algorithm in order to check or analyze its

executions. The execution rollback feature and the trace file capability are particularly helpful

for analyzing executions that result in violations of the invariants or the specification. But

94 CHAPTER 6. SYSTEM EVALUATION

we have noted that the INVARIANT mechanism is not quite strong enough for the study of

distributed algorithms. Typically, when one constructs proofs of distributed algorithms, one

thinks not only about invariants on the private states of individual components, but also about

invariants that involve the states of many system components. In the current Spectrum imple-

mentation, such invariants cannot be checked. One might imagine adding a special language

feature to permit writing such global invariants. However, the superposition extensions we

propose in Chapter 8 will not only enhance the expressive power of the Spectrum language,

but will also permit one to write (and check) global invariants simply by writing invariants of

the higher layer that involve the variables of the components of the lower layer. In addition.

superposition will allow one to create summary mappings based on aggregate information about

components of a composition.

Using spectators, one can check the correctness of an execution and study the message

complexity of an algorithm, but it is difficult to study time complexity in Spectrum. This is

because Spectrum does not support a notion of time. However, several researchers have already

extended tne I/O automaton model for the study of real-time systems, and have used the

extended model to construct timing-based proofs for distributed algorithms [2, 3, 42, 50]. Their

work could form the basis of useful extensions to the Spectrum system. Using their approach,

timing information in Spectrum would not be manipulated explicitly by the algorithm being

simulated (as was seen in DEVS), but timing constraints would be associated with automaton

classes and handled automatically by the system.

Another way to improve the utility of a simulation system for running experiments is simply

to make the simulator run faster. In Chapter 4, we suggested some possible optimizations to

the Spectrum simulator. But another way to speed up simulations is to introduce concurrency

in the simulator. In Chapter 9, we will study the problem of achieving highly concurrent

distributed simulation of I/O automata.

6.2.4 Economy and Integration

Although the Spectrum design separates logically independent concerns, the system is well-

integrated. We have achieved our goal of using the same language mechanisms for writing

programs, creating debugging tools, specifying invariants, and setting up visualization. In

6.3. SUM.IARY 95

addition, a single graphical interface is used for both constructing the system configuration and

controlling the simulation.

6.3 Summary

In Chapter 1, we stated that an aim of this thesis is to demonstrate how distributed algorithm

specification, design, debugging, analysis, and proof of correctness may be integrated within

a single formal framework. We have described the Spectrum Simulation System based on the

I/O automaton model. By remaining faithful to that model, we ease the transition between

formal specifications and algorithm descriptions, and also the transition between algorithm de-

scriptions and correctness proofs. Similarly, we have provided specific tools for using problem

specifications for checking algorithm executions mechanically (spectators), and a language con-

struct for expressing invariants on program states. These tools can be used to help integrate

the design and debugging process with the construction of a formal correctness proof. Further

integrating the tasks of developing algorithms and proving their correctness is likely to be a

fruitful area of research. For example, proof techniques, such as possibilities mappings, are

likely to translate into powerful algorithm development tools.

In this chapter, we compared the Spectrum Simulation System with a number of related

languages and systems, evaluated Spectrum in terms of its design goals, and described many

possible directions for further work. In the remainder of this thesis, we will consider three

of these directions. In Chapter 7, we describe extensions to the I/O automaton model and

Spectrum that expand their expressive power by allowing one to describe distributed algorithms

that make use of atomically accessed shared variables. In Chapter 8, we describe another

extension to the model and system that permits one to superpose I/O automata in order to

describe algorithms in terms of system layers. Finally, in Chapter 9, we address the problem of

distributed simulation of I/O automata.

96 CHAPTER 6. SYSTEM EVALUATION

Chapter 7

Shared Memory

In Chapter 1 we said that reasoning about algorithms for asynchronous concurrent systems

is difficult, primarily because of the arbitrary interleaving of process steps that may occur in

an execution, and that researchers have turned to formal models in order to define problems

precisely, give unambiguous descriptions of algorithms, and construct careful proofs for safety

and progress properties. Formal models allow one to be explicit about the possible interleavings

that may occur in a distributed system and may specify which of those interleavings are to be

considered "fair" to the individual system components. However, any particular formal model

is not necessarily well suited to describing all kinds of distributed algorithms. For example, CSP

[31] is best at modelling systems in which components communicate by sending messages over

synchronous channels, and UNITY [14] is good at describing algorithms in which components

communicate by reading and modifying shared variables.

We have seen that the I/O automaton model is particularly well suited for modelling dis-

tributed algorithms described using message passing. Recall that the I/O automaton model

is a (not necessarily finite) state machine model that provides extra support for classifying

actions as input or output and for describing fairness conditions. Precise problem statements

are defined in terms of the input and output actions that occur at the boundary between the

algorithm and its "environment." These problem statements may include nontrivial liveness

constraints on the behavior of the algorithm. Careful algorithm descriptions are constructed

Sections 7.1 and 7.2 are joint work with Nancy Lynch. Section 7.3 is joint work with Kathy Yelick.

97

98 CHAPTER 7. SHARED MEMORY

by specifying the states and transition relations of I/O automata. A range of proof techniques

from simple assertional reasoning to hierarchical possibilities mappings, may be used to verify

an algorithm satisfies a problem statement. In addition. the model can be used for carrying

out complexity analysis and for proving impossibility results. The communication mechanism

in a distributed system is modeled as an explicit I/O automaton that shares actions with the

other system components. Therefore, the model can accommodate a variety of message-passing

systems, from systems with strictly FIFO message delivery to those in which messages may be

delivered out of order or not at all.

Although the I/O automaton model provides excellent support for modelling message-

passing algorithms, many of the important asynchronous concurrent algorithms are described

using shared memory. And in some cases one might wish to use both shared memory and

message passing to describe different parts of an algorithm. Therefore, it would appear that

introducing a shared memory mechanism into the I/O automaton model would be a useful

unification of these two approaches. The shared memory model of Lynch and Fischer [44] in-

troduced the separation of input and output actions, and was a precursor of the current I/O

automaton model. However, until now it has not been clear how to integrate the two basic

approaches.

In this chapter, we extend the I/O automaton model to allow modelling of shared memory

systems, as well as systems that have both shared memory and shared action communication.

A full range of types of atomic accesses to shared memory is allowed, from basic reads and

writes to atomic read-modify-write. We define a special class of actions, called "shared memory

actions," to model atomic accesses to shared memory. Each shaxred memory action contains

extra information that corresponds to the contents of the shared memory before and after the

action occurs. A "shared memory automaton" is then defined to be an I/O automaton that

satisfies certain natural conditions regarding its shared memory actions. For example, one

condition captures the idea that an access to shared memory must be prepared to observe any

value in the memory.

Since shared memory automata are simply special cases of I/O automata, dl the I/O au-

tomaton model definitions and properties (notably composition and fairness) apply to shared

memory automata as well. We show that composing a collection of bhajed memory automata

99

(for a given set of shared variables) yields another shared memory automaton (for the same set

of variables). To combine shared memory automata having different (not necessarily disjoint)

sets of shared variables, we define an "augmentation" operator that is used to expand the set

of shared variables for each component before composing. We show that the natural compo-

sitionality results hold when we combine shared memory automata in this way. For example,

projecting the execution of a composition on the individual components yields executions of

those components. Since we expose the observed state of shared memory in the behavior of

an automaton, we also achieve compositionality of the behaviors of shared memory automata.

That is, in the standard sense of I/O automaton composition, the behaviors of a composition

of shared memory automata are the same as the composition of the behaviors of the individual

automata.

Shared memory automata operate in a system in which the environment is free to change

the contents of the shared memory at any time. We define a "closeout" operator, which takes a

shared memory automaton and a set of variables and produces a new shared memory automaton

in which t1be given set of variables is made private, absorbed into the local state. In this way, we

restrict the set of components in a system that may access portions of the shared memory.' We

provide an analogous closeout operator on sets of behaviors, and we show that the behaviors

of a closed out automaton are the same as the closed out behaviors of the original automaton.

Just as does the original I/O automaton model, our extended model supports careful prob-

lem specification (including both safety and progress properties), unambiguous system descrip-

tion, verification and analysis. Both safety and progress properties of algorithms may be shown

using standard proof techniques (e.g., invariant assertions and variant functions). To illustrate

these techniques, we present and prove the correctness of Dijkstra's classical shared memory

mutual exclusion algorithm using the shared memory I/O automaton model.

Two features of the model will be especially useful in our shared memory extensions: the

separation of inputs and outputs and the definition of fairness. The separation of input and

output actions will be important for two reasons. First, the fact that each action is under the

control of exactly one component means that by simply using actions to model updates to the

'The ability to ciosc~ut with respect to a subset of the shared variables (as opposed to the entire set) may
be likened to lexical scoping of variable declarations in a conventional programming language.

100 CHAPTER 7. SHARED MEMORY

shared memory, we capture the notion of a single module making an atomic update to shared

memory (without any active participation by other modules). Second, the fact that input

actions are always enabled means that we can use shared memory input actionb to construct

modules that passively observe the shared memory accesses by others without interfering. We

will return to these points in Section 7.1.7. In our example progress proof of Dijkstra's mutual

exclusion algorithm, we will rely on the built-in fairness feature of the I/O automaton model

in order to reason about progress in a system containing several active, non-failing processes

accessing passive shared memory.

Algorithms described using atomic accesses to shared memory are easy to reason about,

since one is not concerned with the possible interleavings of invocations and responses for object

access. However, the invocation-response approach, in which the invocation of an operation on

an object and the corresponding response are modelled as separate atomic steps. fits more

naturally with multiprocessor architectures and often supports greater concurrency. Thus, an

important problem in multiprocessor algorithm design is to carefully construct the processes

and objects in such a way that any the invocation-response system "simulates" an atomic access

system. One approach to this problem has been advanced by Herlihy and Wing [30]. They

propose a property of objects. called linearizability, that permits one to construct invocation-

response systems, and then to reason about only those executions in which each response

immediately follows the corresponding invocation. We exercise the unified model resulting

from our shared memory extensions by showing a formal relationship between the invocation-

response approach and the atomic access approach in the context of linearizable objects.

After presenting these results, we suggest language and system extensions for incorporating

the shared memory extensions (specifically, the closeout operator) into the Spectrum Simula-

tion System. These extensions would allow simulation of message-passing algorithms, shared

memory algorithms, and hybrid algorithms all within a single formal framework. This is an

added benefit of building a powerful unified model that accommodates both message passing

and shared memory communication.

The remainder of the chapter is organized as follows. In Section 7.1, we define our extensions

for shared memory and show some important properties that follow from these definitions.

Then, in Section 7.2, we use extended model to present and prove correct Dijkstra's shared

7.1. SHARED MEMORY DEFINITIONS 101

memory mutual exclusion algorithm. Next, in Section 7.3, we use the extended model to

establish a formal relationship between the invocation-response approach and the atomic access

approach in the context of linearizable objects. Finally, in Section 7.4, we propose extensions

to the Spectrum Simulation System that correspond to the shared memory extensions of the

I/ a-utomiton model. These system extensions would permit describing and simulating shared

memory algorithms.

7.1 Shared Memory Definitions

In this section, we present a set of definitions that extends the I/O automaton model in order to

allow modelling shared memory algorithms. We do not redefine any concepts, but simply add

new concepts to the existing model. We model each system component that accesses shared

memory as a restricted I/O automaton called a "shared memory automaton". The fact that

shared memory automata are simply special cases of I/O automata means that all the standard

definitions and properties of I/O automata (e.g., composition and fairness) can be used directly

in descriptions and proofs of shared memory algorithms.

7.1.1 Variables

We will model shared memory in terms of a collection of variables, so the first step is to define

what is meant by a variable. We define a variable x to have a domain dom(x) of vallies and

an initial value init(x) E dom(z). Given a set X of variables, we model a state of X by an

assignment mapping for X, denoted fx, that maps each variable x E X to a value in dom(z).

We let Fx denote the set of all possible assignment mappings for X. We define init(X) to be

the assignment mapping fx E Fx such that Vx E X, fx(x) = init(x). If X and Y are sets of

variables such that Y C X, we define fxiY to be the assignment mapping fy E Fy such that

for all y E Y, fy(y) = fx(y). If X and Y are disjoint sets of variables, and Sx,Sy are sets

of assignment mappings for X and Y, respectively, then we define Sx E Sy to be the set of

assignment mappings S for XUY such that for all s E S, siX E Sx and slY E Sy. As shorthand,

we may represent a singleton set of assignment mappings by its only element. For example, if

Ix is an assignment mapping for X, we write fx E Sy instead of {fx} @ Sy. Analogously, for

102 CHAPTER 7. SHARED MEMORY

fx E Fx and fy E Fy. we let fx e fl" represent its only element when it is clear from context

that a mapping (rather than a set of mappings) is called for. If f E FX. x E X, and v E dom(x),

we define A,=,] to be the assignment mapping f' such that f'I(X \ {x)) = fJ(X \ {x)) and

f'(x) = V.

7.1.2 Shared Memory Actions

Since the only "sharing- that occurs in the I/O automaton model is the sharing of actions, we

construct shared memory on top of the existing shared action mechanism. We begin by defining

a special type of action called a "shared memory action" that will be used to model accesses to

the shared variables2 .

We fix , a universal set of access labels. Let X be a set of variables. We define a shared

memory action for X to be a triple of the form (f ',a, fx), where f.,fx E Fx and a E .3

We let sm-acts(X) denote the set of all possible shared memory actions for X. We say that 7r

is a shared memory action iff it is a shared memory z ztion for some X. We say a is a shared

memory step (for X) iff its contained action is a shared memory action (for X).

To construct signatures for shared memory automata, we need the following technical defi-

nition. Let II be a set of actions and X a set of variables. We say that II is complete for X iff

VTr E H, if 7r = (f&, a, fX) is a shared memory action for X, then VfA-,fx E Fx, (1., a. fx) EH.

Let X and Y be sets of variables such that Y C X. If 7r = (f&,a, fx) is a shared memory

action for X, we define its projection on Y, denoted rIY, to be (f&jY,a,fxJY), a shared

memory action for Y. If 0 is a sequence of actions, all of whose shared memory actions are

shared memory actions for X, then we define 31Y to be the sequence that results from replacing

each shared memory action of 3 by its projection on Y. Projections on sets of shared memory

actions, signatures containing shared memory actions, and sets of sequences containing shared

memory actions are defined analogously. If a = (s', 7r, s) is a step with 7r a shared memory

action for X, then aI Y is defined to be (s',rIY, s).

21n some sense, this is the reverse of what is often done to incorporate message passing into a shared memory
model. In UNITY [14], for example, shared queue variables are declared to model "channels" and atomic accesses
to these shared queues model "sending" and "receiving" data across the channels.

3 These triples are action names, not to be confused with the steps of an automaton.

7.1. SHARED MEMORY DEFINITIONS 103

7.1.3 Shared IMemory Automata

Let X be a set of variables, and let A be an I/O automaton all of whose shared memory actions

are external shared memory actions for X. Let shared-in(A) denote the set of shared memory

actions that are inputs to A, and let shared-out(A) denote the shared memory actions that are

outputs of A. We say that A is a shared memory automaton for X iff it satisfies the following

conditions:

1. The sets of actions shared-in(A) and shared-out(A) are each complete for X.

2. For all steps (s'.(fx',a,f.), s) E steps(A).

if (f .a, fx) E shared-out(A). then for all fA, E Fx, there exists a state . and some

fx E Fx such that (s', (f., a, fx),) E steps(A).

3. In the equivalence relation part(A), any two output actions (fx',a, fx) and (f Xa, fx)

are elements of the same eouivalence class.

The first condition says that if A has a shared memory action with a given label a, then it

has all possible shared memory actions with label a. For input actions, this means that A

must be prepared to handle any value it may observe in the shared variables (since inputs are

always enabled). For output actions, this condition is simply a technical restriction that makes

composition of shared memory automata work out properly, as we will see later. The condition

also makes describing the signatures of shared memory automata more convenient, since we

need not list all the allowable values of the shared variables for each shared memory action

label used.

The second condition says that for each shared memory output step, there exists a step from

the same state for each possible assignment of the shared variables. In essence, this says that

the preconditions of an output action may not depend on the values of the shared variables.

This corresponds with the notion that one cannot observe the values of shared variables except

by accessing them, and that one must be prepared to handle any value that might be observed.

The third condition says that the equivalence class membership of an output action may not

depend upon the values of the external variables. This is a technical condition that prevents

a nonsensical situation in which executions must be "fair" to the different values of the shared

variables.

104 CHAPTER 7. SHARED MEMORY

Since a shared memory automaton is an I/O automaton, all the standard I/O automaton

definitions for executions, schedules. behaviors, composition. and fairness carry over to shared

memory automata.

Theorem 7.1: The composition of a strongly compatible collection of shared memory au-

tomata for X is a shared memory automaton for X.

Proof: We know that the composition of a strongly compatible collection of I/O automata

is an I/O automaton. Furthermore. since external actions of the components are external

actions of the composition, we know that all of the shared memory actions are external actions

in the composition. All of these are shared memory actions for X. It remains to be shown

that the composition satisfies the three conditions imposed on shared memory automata for

X. Condition I holds, since the union of complete sets of actions is clearly a complete set.

For condition 2, we note that composition does not introduce any new output actions. nor

does it remove any existing output actions. Furthermore, input-enabling and the definition of

composition imply that for each output step (s', 7r, s,) of a component Ai, for all states s' of

the composition A, if s'iA, = s', then there exists a state s of A such that (s',7r,s) i.' a step of

A. Thus, Condition 2 holds. Since the equivalence relation of the composition is the union of

the individual equivalence relations of the components, any two actions in the same equivalence

class in a component are in the same equivalence class in the composition. Since the set of

shared memory output actions for each component is complete, strong compatibility assures us

that no two shared memory output actions with the same label occur in different classes of the

composition. This guarantees Condition 3. M

So far, we have given a general set of definitions for modelling collections of modules that

access shared memory. Our accesses allow a module to atomically read the entire contents of

memory, perform some local computation (possibly resulting in a state transition), and update

the entire contents of shared memory. This general type of shared memory access is, of course,

an expensive operation to implement. Therefore, we would like to define systems in which the

shared memory accesses are more restricted. For example, in the most restricted case, we might

only allow read or write accesses to single shared variables.

Let A be a shared memory automaton for X, let a be an access label of A, and let X E X.

We say that a is a

7.1. SHARED MEMORY DEFINITIONS 105

1. read access to x iffV(s',(f'.a. f),s) E steps(A),

(a) f = f' and

(b) VI E F.y such that f(x) = f'(x), (s',(f.a.f),s) E steps(A).

2. write access to x with value v iff V(s',(f'.a.f),s) E steps(A),

(a) f = fi'.=. and

(b) Vi E Fy, (s',(f,a,f =.).s) E steps(A).

In a read access to x, the shared memory is unmodified and the new state of A depends

only upon the value observed in variable x. In a write access to x, the "before" and "after"

states of shared memory differ only in the value of ;ariable x, and the new state of A and the

new value of x are independent of the "before" state of shared memory.

We now define a restricted class of shared memory automata called "single-variable read-

write automata." In such automata, each access label for a shared memory output is constrained

to be a read access or a write access to a single variable. Let A be a shared memory automaton

for X, and let w, be a partition of the access labels for actions in shared-out(A) such that there

exist exactly two classes in 4, for each variable in x E X, denoted V,(x) and 0,,(x). The

partition v, is called the access partition of A. We say that A is a single-variable read-write

automaton under V iff Va E X, v (a) contains only read accesses to x and ip,(x) contains only

write accesses to x. We say that such an automaton can read x iff ?r(x) is nonempty, and can

write x iff V',,() is nonempty. If Q is a collection of single-variable read-write automata, then

a component of Q is said to own a variable x if it is the only component that can write x; in

this case, x is said to be a single-writer variable. Multi-writer, single-reader, and multi-reader

variables are defined in the obvious way.

Other classes of shared memory automata could be constructed in a similar manner. For ex-

ample, one might define test-and-set or memory-to-memory-swap accesses and define automata

in which the access labels are appropriately partitioned into additional classes. In fact, this

style of definition can be used to define shared memory accesses for operations on arbitrary

data types, such as enqueue and dequeue. Of course, any shared mtemory algorithm could be

expressed and studied using the general shared memory automaton definition only, but be-

ing specific about the types of shared memory accesses allowed makes the assumptions about

106 CHAPTER 7. SHARED MEMORY

the underlying shared memory more explicit, and also may help simplify reasoning about the

algorithm.

7.1.4 Augmentation and Augmented-Composition

In building up I/0 automaton systems, we may wish to compose collections of shared memory

automata having different (either intersecting or disjoint) sets of shared variables. We would

like the result of this composition to be a shared memory automaton for Z, where Z is the

union of the sets of shared variables of the automata being composed. In order to accomplish

this, we first -augment" each of the automata with additional shared variables so that its set

of shared variables is Z. Then we compose as usual. 4

We now define what is meant by augmenting an automaton. Let X and Z be sets of

variables, with X C Z. Given a shared memory automaton A for X, we define augment(A. Z),

read "the augmentation of A to Z," to be the automaton B as follows:

" in(B) = {r EbM-acts(Z) : irJX Eshared-in(A)} U (in(A)\shared-in(A)).

" ?ut(B) = {r Esm-acts(Z) : 7rIX Eshared-out(A)} U (out(A)\shared-out(A)).

" int(B) = int(A).

* states(B) = states(A).

" start(B) = start(A).

" steps(B) = all steps a = (s',7r,s) such that either

1. a E steps(A) and r is not a shared memory action, or

2. aiX E steps(A) and ir Eshared-in(B), or

3. CiX E steps(A), r = (fz,a, fz) Eshared-out(B), and f J(Z - X) = fzl(Z - X).

* part(B) = {C C local(B) : CJX E part(A)} such that part(B) forms a partition of the

locally-controlled actions of B.

4 When composing a shared memory automaton with an "ordinary" I/0 automaton, no augmentation is
necessary, since an ordinary I/0 automaton is by definition an SMA for any set of variables X.

7.1. SHARED MEMORY DEFINITIONS 107

Essentially, we augment A by making the signature complete for Z. while leaving the set of

states unchanged. For each step involving a shared memory action 7r for X. we substitute the

set of all steps in which A is replaced by a shared memory action for Z (call it i') such that

ir'IX = r. For output actions steps, we make the further restriction that if ir' = (f'.a. fz),

then f and fz differ only in their assignments to the variables of X. This models the fact that

outputs of B only change the values of shared variables in X. We do not make this restriction

for input actions because they are always enabled. This also highlights the fact that the shared

memory accesses of B are independent of all shared variables other than those in X. The

partition of B is constructed from that of .4 to reflect the differences in their signatures.

Theorem 7.2: Let X and Z be sets of variables, with X C Z, and let A be a shared memory

automaton for X. Then augment(.4, Z) is a shared memory automaton for Z.

Proof: Immediate from the definitions of augmentation and shared memory automata. N

Our next result, Theorem 7.5. says that augmentation does not (in any significant way) affect

the behavior of an automaton.

Lemma 7.3: Let X and Z be sets of variables such that X C Z. If A is a shared memory

automaton for X and an is an execution of A, then there exists an execution OB of B =

augment(A. Z) such that OBIX = aA.

Proof: Clearly, if 0 A contains no actions, the claim holds. For the inductive hypothesis, let

aA = aAOrAS be an execution of.A, and let a' be the execution of B such that a'IX =

Clearly the state of A after a' is the same as the state of B after a' . Let this state be s'. It

remains to be shown that some lrB is enabled from s' in B, resulting in state s, where 7rBIX -

7rA. If 7'A is not a shared memory action, then the result is trivial, since the steps of A and B

differ only with respect to shared memory actions. If rA is a shared memory action (f, a, fx),

then by the definition of augmentation, there must be a step (s', irB = (ffz, a, fz), s) E steps(B)

such that BIX = TA.

Lemma 7.4: Let X and Z be sets of variables such that X C Z. If A is a shared memory

automaton for X and aB is an execution of B = augment(A, Z), then there exists an execution

aA of A such that aa = aBIX.

108 CHAPTER 7. SHARED MEMORY

Proof: If aB has no actions. the claim holds. For the inductive hypothesis, let 0 B = aO'7rBs

be an execution of B, and let a be the execution of A such that a' IX = a' . Clearly the

state of B after a' is the same as the state of A after a'A. Let this state be s'. It remains to be

shown that some rA4 is enabled from s' in A. resulting in state s, where rA = 7rBIX. If rB is not

a shared memory action, then the result is trivial as before. If lrB is a shared memory action

(f ,a, fz), then by the definition of augmentation, the step (s',(fzIX,a, fzlX).s) E steps(A).

Therefore, the second claim holds. 0

Theorem 7.5: Let X and Z be sets of variables such that X C Z. If A is a shared memory

automaton for X, then

1. behs(augment(A, Z))IX = behs(A), and

2. fairbehs(augment(A, Z))IX = fairbehs(A).

Proof: Part 1 is immediate from Lemmas 7.3 and 7.4.

For Part 2, let CfA be a fair execution of A. and let OA = beh(aA). From Lemma 7.3, we

know that there exists an execution aB of B = augment(A, Z) such that aBIX = aa. To show

that aB is fair, we apply the definition of augmentation. From the construction of steps(B), a

shared memory action 7r E acts(B) is enabled in state s of B only if irJX is enabled in state s

of A. The remaining actions 7r E acts(B) are enabled in in state s of B only if 7r is enabled in

state s of A. Furthermore, any two actions 7r and 7r' are in the same equivalence class of B iff

irjX and ir'IX are in the same equivalence class of A. So, since aA is fair, aB is fair.

Now, to show the other direction, let aB be a fair execution of B. By Lemma 7.4, there

exists an execution aA of A such that QA = aBIX. To show that aA is fair, we argue similarly

to above. a

We can now define augmented-composition. making use of the augmentation definition and

standard I/O automaton composition.

Augmented-Composition: Let {Xi}jt, be a collection of (not necessarily disjoint) sets of

variables, let Z = Ui:EXi, let each Ai be a shared memory automaton for Xi, and let the

collection {augment(Ai)} t be strongly compatible. We define the augmented composition

lE A, to be the ordinary I/O automaton composition liEt augment(Ai, Z).

7.1. SHARED MEMORY DEFINITIONS 109

Theorem 7.6: Let {X,},ie be a collection of (not necessarily disjoint) sets of variables, let

Z = UijX,. let each Ai be a shared memory automaton for Xi, and suppose that the collection

of automata {augment(A,,Z)}, ! is strongly compatible. Then the augmented composition

H-JI Ai is a shared memory automaton for Z.

Proof: By Theorem 7.2. for each Ai, augment(Ai, Z) is a shared memory automaton for Z.

Therefore. by Theorem 7.1, the result holds. N

The following three compositionality results follow immediately from the corresponding results

in [481. together with Theorems 7.5 and 7.6. The first result says that an execution of an

augmented-composition induces executions of the component shared memory automata.

Corollary 7.7: Let {X}EI be a collection of sets of variables, where Z = UiEiXi. Let {AiILEI

be a collection of automata such that each A, is a shared memory automaton for Xi. Let the

collection of automata {augment(Ai, Z)}S be strongly compatible, and let A = fl'J Ai. If

a E execs(A) then (alaugment(Ai,Z))iX E execs(Ai) for every i E I. Moreover, the same

result holds if execs() is replaced by fairexecs(, schedso, fairschedso, behso, or fairbehso.

The next result says that executions of component shared memory automata can often be

pasted together to form an execution of the augmented-composition.

Corollary 7.8: Let {X 1}, L be a collection of sets of variables, where Z = UEIXi. Let {Ai}LEI

be a collection of automata such that each Ai is a shared memory automaton for Xi. Let

the collection of automata {augment(Ai, Z)}E, be strongly compatible, and let A = 1I11 A,.

Suppose a, is a (fair) execution of Ai for every i E I, and let 0 be a sequence of actions in

acts(A) such that (/i3augment(Ai. Z))IXi = sched(ai) for every i E I. Then there is a (fair)

execution a of A such that 0 = sched(a) and ai = (alaugment(Ai, Z))IXi for every i E I.

Moreover, the same result holds when acts() and scheds() are replaced by ext() and beho.

Finally, schedules and behaviors of component shared memory automata can also be pasted

together to form schedules and behaviors of the augmented-composition.

Corollary 7.9: Let {Xi} I be a collection of sets of variables, where Z = UilX,. Let {Ai}iei

be a collection of automata such that each Ai is a shared memory automaton for Xi. Let the

collection of automata {augment(Ai, Z)}, I be strongly compatible, and let A = Fl'+ A,. Let

110 CHAPTER 7. SHARED MEMORY

3 be a sequence of actions in acts(A). If (31augnzent(Ai. Z))IX, E scheds(A,) for every I E I,

then 3 E scheds(A). Moreover, the same result holds when acts() and scheds() are replaced

by ext() and behs(), respectively, and similarly when replaced by acts() and fairscheds() or by

ext() and fairbehs().

7.1.5 The Closeout Operator

So far, we have introduced shared memory actions to model accesses to shared variables, and we

have defined a special kind of I/0 automaton containing shared memory actions in its signature.

We have interpreted the first triple of each action as the "before state" of shared memory and

the third component as the "after state." However, we have not yet placed any restrictions on

the the relationship between the "after state" of one shared memory action and the "before

state" of the next. A shared memory automaton is not guaranteed that the value it writes

to a given shared variable will be the value observed by the next system component reading

that variable. In other words, we permit the environment to freely modify the values in shared

memory. We would like to construct systems in which the set of components that may modify a

particular shared variable is fixed, closed to the environment. We therefore define a "closeout"

operator, which takes a shared memory automaton A and produces a new automaton B such

that some or all of the shared variables of A become part of the local state of B. In this way, the

"absorbed" variables can be touched only the by the actions of B. Since A may be the result of

composing several shared memory automata, the closeout operator achieves the desired result

of restricting shared variable accesses to a particular collection of system modules.

We now define the closeout operator C. Since the state of an automaton may be thought of

as a mapping from a set of variables to a set of values, we will feel free to operate on states as

if they were assignment mappings. Let X and Y be disjoint sets of variables, let Z = X U Y,

and let A be a shared memory automaton for Z. We define B = C(A,X) as follows:

" sig(B) = sig(A)jY

" states(B) = states(A) E FX,

" start(B) = start(A) D init(X),

• steps(B) contains exactly the following set of steps: for each step (s', 7r, s) in steps(A),

7.1. SHARED MEMORY DEFINITIONS Il1

1. if 7r = (ffz, a, fz) is a shared memory action, then
(s'e- (f'I X). (f'Y, a. fz Y). s ,(fzJX)) E steps(B).

2. if ir is not a shared memory action, then

{(s' f.xo. a, s E f.Y,) : fx E Fxy)_ steps(B), and

. part(B) = part(A), where each class is projected on Y.

Essentially, the variables in X are absorbed into the internal state of the "closed out" automa-

ton. If x E X, we use the familiar record notation s.x to refer to the value of z in a particular

state s of B. That is, if sB = SA ,j fX, where sA is a state of A, then SB.x = fx(x).

Given the definition of the closeout operator, we get the following natural result.

Theorem 7.10: Let A be a shared memory automaton for Z and let X and Y be disjoint sets

of variables such that Z = X U Y. Then B = C(A,X) is a shared memory automaton for Y.

Proof: To show that B is an I/O automaton, we must demonstrate that for all states s'

and input actions ir of B, there exists a state s' of B such that (s', 7r, s) E steps(B). Since this

property is true of A, and since shared.in(A) is complete, this property is also true of B by

the construction of steps(B). (When we construct the steps of B, completeness of shared-in(A)

guarantees that we include all possible values for X in the "before states" of the steps for each

input action.)

We now show that I/O automaton B is a shared memory automaton for Y. Clearly, all

the shared memory actions of B are external shared memory actions for Y. We now show

that each of the three conditions in the definition of a shared memory automaton hold for B.

For the first condition, since shared-in(A) is complete for Z, shared-in(B) = shared-in(A)IY

must be complete for Y. Similarly, for shared-out(B). The second condition requires that for

every step (s', (ff,,a, fy),s) in steps(B), if (fy,a, fy) E shared-out(B), then for all f, E Fy,

there exists a state S and some fy E Fy such that (s',(f,,a, fy),) is in steps(B). Since this

condition is true for A, we know that for each shared memory output action label a, there

exists a step (s', (fx E fy, a, fx E fy), s) for every possible assignment mapping f E f, for Z.

Therefore, when we project on Y in constructing steps(B), we have a step (s', (f',a, fy), s)

for each possible assignment mapping fy, for Y. The third condition, regarding membership of

equivalence classes, is obviously true of B. U

112 CHAPTER 7. SHARED MEMORY

7.1.6 Closeout for behaviors

We now give a closeout definition for behaviors that is analogous to the one for automata.

Let X and Z be sets of variables with X C Z. If 3 is a sequence of actions of a shared

memory automaton A for Z, then we say that 3 is consistent for X iff the following conditions

hold:

1. if (ffz, a. fz) is the first shared memory action in 3, then fz IX = init(X), and

2. if (fz', a,, f) and (fz, a2, fz) are shared memory actions in 0 such that no shared memory

action occurs between them. then f~z-X = ffzX.

If E is a set of sequences of actions of a shared memory automaton for Z, then we define C(2, X)

to be the set Ex I(Z- X), where Ex is the subset of E containing exactly those sequences that

are consistent for X.

Lemma 7.11: Let X and Z be sets of variables such that X C Z. Let A be a shared memory

automaton for Z, and let aB be an execution of B = C(A, X) with behavior /3 B. Then there

exists an execution aA of A, with behavior 3 A consistent for X, such that OAI(Z - X) = 3 B.

Proof: Let Y = Z - X. We construct the sequence aA from 0 B as follows. For each step

(s' E fk',X r,s E fx) in aB, if 7r = (fl,,a, fy) is a shared memory action of B, then we let the

corresponding step in QA be (s',(f, D f',a, fy E fx),s); and if ir is not a shared memory

action, we let the corresponding step in QA be (s', ir, s).

Let /B = beh(aA). Clearly, OBIY = 3A. It remains to be shown that CrA is an execution of

A and that OA is consistent for X. We show that aA is an execution of A by showing that each

step of aA is in steps(A). Let a = (a' E &f r, sr, (fx) be a step of B. If r = (fy,a, fy) is a

shared memory action of B, then by the construction of steps(B) in the definition of closeout,

(s', (f" E f, a, fy E fx), s) must be a step of A. Similarly, if ir is not a shared memory action,

then (9', 7r, a) must be a step of A. Therefore, the construction produces an execution of A.

Finally, we show that OA is consistent for X. Since every initial state of C(A,X) is in

states(A) $ init(X), it must be that the first shared memory action (fz, a, fz) of 1B has

f'IX = init(X), so the first con.istency condition is satisfied. We know that the second

consistency condition must be satisfied, since any two successive steps (s"', 7ri, s") and (s', 7r2 , 8)

7.1. SHARED MEMORY DEFINITIONS 113

of any execution must have s" = s' , the assignments to the variables of X are part of the state

of C(A,X), and the only actions that may change the values for X in the state of C(A,X)

correspond to shared memory actions for for Z. 2

Lemma 7.12: Let X and Z be sets of variables such that X C Z. Let A be a shared memory

automaton for Z and let aA be an execution of A with behavior 3A. If 3A is consistent for X.

then there exists an execution aB of B = C(A, X) such that OA(Z - X) is the behavior of OB.

Proof: Let Y = Z - X. Let 0 B be the execution constructed from aA as follows. For each

shared memory action r in a , let the corresponding action in aB be irjY. Leave the remaining

actions as in OA. For each state s in aA, let the corresponding state in OB be se(fzX), where

fz is the third component of the preceding shared memory action in aA (or fz = init(Z) if

there is no preceding shared memory action).

Clearly /3 AIY = beh(aB). We claim that aB is an execution of B. To prove this claim, we

proceed by induction on the length of aB, showing that each action is enabled from the state

in which it occurs. Clearly, if QB contains no actions, then the claim holds. Let (S'A,r,sA)

be a step of QrA, and let a' be the portion of aB up to (but not including) the action irfY

for the corresponding step in OB. We wish to show that if a' ends in state s', then the step

(s'B , 7r1lY, sB) E steps(B), where sB is the next state of aB. By the construction, we know that

3B = s' (fhIX), where f is the third component of the preceding shared memory action

in aA (or f - init(Z) if there is no preceding shared memory action), and similarly for sB.

There are two cases for 7r:

1. If ir is not a shared memory action, then clearly it is enabled from s', since (by the

construction) s and a' are identical except that s' does not assign values to the variables

in X. Furthermore, since r is not a shared memory action, SBIX = 4s1X, so the step

exists by the definition of the closeout operator.

2. If ?r = (fe, a, fz) is a shared memory action, then consistency of OA requires that fz' be

the third component of the preceding shared memory action in Q!A (or init(Z) if there is no

such preceding action). By the definition of closeout, we know steps(B) contains the step

(s' $ (fzIX), (fzI Y, a, fzIY), SA E (fzIX)). And by the construction, s' E (fzIX) = 4
and SA E (fzIX) = 3B. Therefore, the desired step exists.

114 CHAPTER 7. SHARED MEMORY

In both cases, niY is enabled and leads to state SB. 4

Theorem 7.13: Let X and Z be sets of variables such that X C Z. If A is a shared memory

automaton for Z, then

1. behs(C(A,X)) = C(behs(A),X), and

2. fairbehs(C(A, X)) = C(fairbehs(A), X).

Proof: Part 1: Let Y = Z - X. By Lemma 7.11, we know that if /31 Y is a behavior of

C(A. X), then 3 is a behavior of A that is consistent for X. Therefore /3Y E C(behs(A), X), by

definition. If 311" E C(behs(A), X), then by definition of closeout on behaviors, /3 is consistent

for X. Therefore. Lemma 7.12 tells us that ;31Y E behs(C(A,X)).

Part 2: First, we show that fairbehs(C(A,X)) contains C(fairbehs(A), X). Let 13B be a fair

behavior of B = C(A,X), and let aB be an execution of B with beh(aB) = /3B. Construct

execution aA of A from OB as in the proof of Lemma 7.11 such that beh(aA)I(Z - X) = '3 B.

Since A is a shared memory automaton, we know that shared-out(A) is complete and that for

any given access label a E L, all shared memory actions with label a belong to the same class.

Furthermore, by the definition of closeout. rA and ir' belong to the same equivalence class in

A iff rAIX and 7r' X belong to the same equivalence class in B. Therefore, given that aB is

fair, we can show that aA is fair by arguing that an action 7rA is enabled in state SA of aA iff

IrAIX is enabled in the corresponding state sB of aB. This is easily seen from the construction

of steps(B), since .sA = SBI(Z - X).

Now, we show that C(fairbehs(A), X) contains the set fairbehs(C(A, X)). Let /3 A be a fair

behavior of A that is consistent for X, and let aA be an execution of A with beh(GA) =

03A. Construct execution aB of C(A,X) from aA as in the proof of Lemma 7.12 such that

,3AI(Z - X) = beh(aB). The remainder of the proof is argued as above. U

7.1.7 Discussion

Important in defining our shared memory extensions were the built-in features of the I/O

automaton model, most notably composition and the separation of inputs and outputs. By

using the built-in notion of an output action being under the control of a single process, we

were able to capture the idea of a single module making an atomic update to shared memory

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 115

(without any active participation by other modules). In addition, by exposing the values of the

shared variables as part of the shared memory accesses, we were able to not only carry forward

the compositionality properties of I/O automaton behaviors but also provide a useful notion of a

shared memory action as an input. We expect normal communication through shared variables

to be modeled using output actions only, but the input actions allow a module to passively

observe the accesses to shared memory made by other processes. We see two potential uses

for this feature. First, one might use shared memory actions as inputs to construct external

processes that are not part of the algorithm but monitor the use of shared memory (possibly as

a means to check algorithms in a simulation system). Second, in a modular algorithm design, it

may be appropriate to divide a task into several I/O automaton components such that only one

component accesses the shared memory while the others are kept "informed" of these accesses

by receiving them as inputs (e.g., to model a collection of processes "snooping" on a memory

bus to update local caches).

7.2 Example: Dijkstra's mutual exclusion algorithm

In order to illustrate the shared memory extensions just presented, we apply them to Dijkstra's

classical shared memory mutual exclusion algorithm. We begin by defining the mutual exclusion

problem in terms of the I/O automaton model. We then present Dijkstra's algorithm as a com-

position of shared memory automata. The safety and progress proofs that follow demonstrate

how proofs using standard assertional techniques may be expressed straightforwardly using this

model.

7.2.1 The Mutual Exclusion Problem

Fix n, a positive integer, and let 1 = {1, 2,..., n}. We define schedule module M with sig(M)

as follows:

Inputs: UserTryi, i E 1" Outputs: Criti, i E I

UserExiti, i E I Remi, i E 1I

Schedule module M interacts with an environment that may be thought of as a collection

of n user processes ui, i E I, where each process ui has outputs UserTry, and UserExiti, and

116 CHAPTER 7. SHARED MEMORY

has inputs Criti and Remi. A UserTry, action means that process ui wishes to enter its critical

section. A Criti action by 1M gives u, permission to enter its critical section. A UserExiti action

means that process u, is leaving its critical section. Finally, the Remi action gives ui permission

to continue with the remainder of its program. If 3 is a sequence of actions of M, then we

define 31i to be the subsequence of 3 containing exactly the UserTryi, Criti, UserExiti, and

Remi actions. Before defining the allowable schedules of M, we define the set of well-formed

and user-live sequences of actions of .1. Let /3 be a sequence of actions in sig(M). We say that

3 is well-formed iff for all i E 1, all prefixes of i31i are prefixes of the infinite sequence UserTryi.

Criti, UserExiti, Remi. UserTryi, Criti,.... This says, for example, that a process will not issue

a try request while in its critical section. If 3 is a sequence of actions of S, we say that 3 is

user-live iff for all i E I. 31i is either infinite or does not end with Criti. Informally, this says

that no user ui stops in its critical section. An execution is said to be well-formed (user-live)

iff its behavior is well-formed (user-live).

We define the set scheds(M), the allowable external behaviors of M, as follows. Let 3 be a

sequence of actions in sig(M). Then 3 E scheds(M) iff the following conditions hold:

1. M preserves well-formedness in 1-

2. If 3 is well-formed, then

(a) (mutual exclusion) Vi,j E 11, if Criti and Critj occur in 3 (in that order), then

UserExiti occurs between them.

(b) (progress) if 3 is user-live, then either 0 is infinite or Vi, 1i ends with Remi.

Condition (2a) is the safety property: no two processes are in their critical sections simulta-

neously. Condition (2b) is the progress property: either all processes eventually end up in their

remainder regions or some process enters the critical region infinitely often. Both properties

are guaranteed only if the user processes preserve well-formedness, and the progress condition

is guaranteed only if uset processes eventually exit the critical region. In this variant of the

mutual exclusion problem, only a very weak progress requirement is made. For example, cor-

rect solutions to this problem admit executions in which a process is locked out of the critical

section.

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 117

7.2.2 Dijkstra's Mutual Exclusion Algorithm

In this section. we model Dijkstra's shared memory mutual exclusion algorithm [15] as

an illustration of our shared memory extensions to the I/O automaton model. As presented

here, the variable names and structure more closely follow the description in [45], although the

algorithm is the same.

We implement schedule module Al by a collection of n automata pi, i E 2, where each pi

interacts with ui through shared actions and interacts with the other p,'s using shared variables.

Each p, has three state components: stage E {try, read, check, set, control2, final-check, failed.

crit. exit, done. remainder}; k, an integer in the range 1 to n; and checked, a set of integers

in the range 1 to n. Initially, stage = remainder, k is arbitrary, and checked is the empty set.

Automaton pi is a shared memory automaton for V, where V has the following variables: k,

an integer in the range 1 to n: and control[j] for j E 1, which take on values from {0,1,2}.

Initially, k has an arbitrary value and all control variables are 0. The code for automaton pi is

shown in Figure 7-1. Shared memory actions are listed by their access labels and distinguished

by daggers (t), all other actions are listed by their action names. All actions of pi are outputs,

except UserTryj and UserExiti, which are its inputs. "Pre" and "Eff" denote "precondition"

and "effect", respectively. For shared memory actions, the step (s', (v', a, v), s) is in steps(pi)

exactly when the precondition for a is satisfied in state s' and s and v are derived from s' and

v' according to the effect clause. For all other output actions, the step (s', r, s) is in steps(pi)

exactly when the precondition for 7r is satisfied in state s' and state s is derived from state s'

according to the effect clause. If an action has no precondition, it is always enabled. If a state

component or variable is not mentioned in the effect clause, it is left unchanged by the action.

The partition consists of a class for each i E I that contains all the output actions of pi.

Essentially, the algorithm proceeds in two stages. After receiving a UserTryi input, pi sets

its control variable to 1 and enters stage one. In stage one, it continually reads k and checks to

see if control[k] is 0. If it finds a 0 in control[k], it sets k to its own index i. If it reads k and

finds it equal to i, pi proceeds to stage two and sets its control variable to 2. In stage two, pi

performs a final check by examining the control variables of all the other processes. If any of

these control variables are found to be 2, then pi fails and returns to stage one (where it sets

its control variable back 1). Otherwise, pi finds all the control variables to be less than 2 and

118 CHAPTER 7. SHARED MEMORY

*UserTry,
Eff: s.stage, = try

t Try,
Pre: s'.stage, E (try, failed}
Eff: v.control~i] I

scheckedi = i}
s.stage, =read

t Read1
Pre: s'.stagei read
Eff: s.ki = v.

if s.kj = i then
s.stage, = control2

else
s.stage, = check

t Check(jhj
Pre: s'.stagei = check

i = s.k
Eff: if v'.controlIj] = 0 then

s.stage, = set
else

s.stage, = read

t Set,
Pre: s'.stagei set
Eff: v.k =

s.stage, read

t Control21
Pre: s'.stagei contro12
Eff: v.control[i] = 2

s.stage, final-check

t FinalCheck(j)i
Pre: s'.stage, final-check

j V s'.checkedi
Eff: if v'.controlfj = 2 then

s.stagei = failed
else

s.checkedi = s'.checkedi U{j

" Grit,
Pre: s'.stagei = final-check

I s'.checkedil = n
Eff: s.stagej crit

" UserExit,
Eff: s.stagei exit

scheckedi = i)

tResetj
Pre: s'.stage, = exit
Eff: v.control[i] = 0

s.stage, done

* Remi
Pre: s'.stagei done
Eff: s.stagei remainder

Figure 7-1: Transition Relation for pi in Dijkstra's Algorithm

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 119

issues a Criti action, allowing ui to proceed to the critical section. After u, leaves the critical

section (and issues a UserExiti action). pi resets its control variable to 0 and issues a Rem,

action.

We associate with each pi an access partition V4 as follows: For each j E 1, v.i(control[j])

contains the labels Check(j), and FinalCheck(j),. Also, o'(control[i]) contains the laoels Try,,

Control2,, and Reseti. And for each j 5 i, v.(control[j]) is empty. Finally, W'(k) contains

Read, and L .(k) contains Set,. The following result follows immediately from inspection of the

code.

Lemma 7.14: For all i E 1. automaton p, is - single-variable read-write automaton under tV'.

We let system S = C(l 1 <,<npi. {k. control[i], i E I}) be the composition of the processes of

Dijkstra's algorithm, closed out on k and the control variables. Furthermore. we hide all shared

memory actions of S so that the external signatures of -l and S are the same. One may note

that all the p,'s in system S can read and write shared variable k, whereas the variable control[i]

may be written only by p, and read by the other p,'s. That is. each control,] is owned by p,.

while k is a multi-writer variable.

We wish to show that system S solves schedule module Al. The proof has three parts. First,

we show that S preserves well-formedness in all executions. Condition (1) of module M. In

Section 7.2.3. we give the safety proof. Condition (2a). Finally, we present the progress proof,

Condition (2b). in Section 7.2.4.

If i is a process index and s is a state of system S, we say that process pi is a contender in

state s. written contender(i, s), iff s.stagea E {read, check, set, control2, final-check, failed).

Lemma 7.15: Let a be an execution of system S with behavior 3. Then system S preserves

well-formedness in 3.

Proof: By induction on the length of a. For the base case, if a contains no actions, then

it is well-formed. Let a = a'sir, where beh(a') is well-formed and 7r is an output action of S.

There are two cases.

9 If ir is a Criti action, then by the preconditions of that action it must be that pi is a

contender in state s. Therefore, the last action in beh(a')fi must be UserTry,, for any

other action would leave pi in a non-contender state.

120 CHAPTER 7. SHARED MEMORY

* If ir is a Rem, action, then by the preconditions of that action it must be that stage, =

done in state s. Therefore, the last action in 3'Ii must be Reseti, for any other action

would leave pi in a state with stage, $ done. Since Reseti is only enabled when stagei =

exit. the last action in beh(Y)Ii must be UserExiti. for any other action would leave p, in

a state with stagei 4 exit.

In both cases. 3 is well-formed. U

The following lemma will be used in the safety proof to rule out the occurrence of UserTry

and UserExit actions from certain states.

Lemma 7.16: Let Q be an execution of system S with behavior J. If 3 is well-formed, then

for all states s in a. if s is immediately followed by a UserTry (UserExiti) action, then s.stagei

is remainder (crit).

Proof: If s is followed by UserTry,, then by definition of well-formedness, the preceding

action in 31l is a Remi action, and a Remi action leaves stagei = remainder. Furthermore, no

output actions of pi are enabled while stage, = remainder. If s is followed by UserExit,, then

by definition of well-formedness, the preceding action in .;3Ii is a Criti action, and a Criti action

leaves stage, = crit. Furthermore. no output actions of p, are enabled while stagei = crit. 0

7.2.3 Safety Proof

Let s be a state of system S. To denote the set of processes in (or about to enter) their critical

sections, we define the set ready(s) = {i : (s.stagei = crit) V (Is.checkedi[= n)}. The proof is

based on a set of invariants, proved in the following Lemma. 5

Lemma 7.17: Let a be a well-formed execution of system S. In states s of a, for all processes

P2 and p., the following facts hold:

1. s.control[i] = 2 iff s.stage, E {final-check, failed, crit, exit}.

2. If s.checked, t {i} then s.stage, E {final-check, failed, crit}.

sAlthough the last invariant of Lemma 7.17 is used only in the liveness proof, we present it here because of
its similarity to the others.

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 121

3. If i $ j, then i E s.checked, = j = s.checkedi.

4. If i E ready(s) then s.checkedi = {l,2....n}.

5. If s.stage, E {control2. final-check, failed, crit, exit, done}, then s.ki = i.

Proof: In the initial state of S, Vi E 1. control[i] :: 0, checked, = {i}, and stage, = remainder.

Therefore, all the facts hold in the initial state. Let a = a' rs, and assume that the facts hold in

all states of a', and specifically in the last state s' of a'. We consider each fact in turn, showing

that it must hold in state s as well.

1: If s'.control[i] = 2, then by the induction hypothesis s'.stage, E S - {final-check. failed,

crit. exit}. Therefore, 7r must be either Tryi, FinalCheck(j)i, Criti, UserExiti, or Reseti.

(Lemma 7.16 rules out UserTryi.) The actions FinalCheck, Criti, and UserExiti do not

change the value of control[i] and result in s.stagei E S. The actions Tryi and Reset, both

cause s.control[i] 5 2. but also result in s.stagei 0 S. Therefore, the property is preserved

if s'.control[i] = 2.

If s'.control(i] # 2. then by the induction hypothesis s'.stagei q' S. Therefore, 7r must

be either UserTryi. Tryi, Readi, Check(j)i, Seti, Control2i, or Remi. (By Lemma 7.16.

UserExiti is ruled out.) Actions UserTryi, Readi, Clteck(j)i, Seti, and Remi do not

change the value of control[i] and result in s.stagei 0 S. Furthermore, the action Tryi

sets control[i] = 1 and results in s.stagei ' S. Finally, the action Control2i sets control[i]

= 2, but also results in s.stagei E S. Therefore, the property is preserved if s'.control[i]

52.

2: If s'.checked, = {i}, then the only possibility for 7r which could cause s'.checkedi $ {i} is

FinalCheck(j)i. This action is only enabled if s'.stage[i] = final-check. The FinalCheck(j)i

either does not change stage, or sets s.stagei = failed. Therefore, the property is preserved.

If s'.checkedi $ {i}, then by the induction hypothesis, s'.stagei E {final-check, failed,

crit}. Therefore, the only possibilities for 7r which could cause s.stage, {final-check,

failed, crit} are Try, and UserExiti. (The action UserTry, is ruled out by Lemma 7.16.)

However, in both cases, s.checkedi = {i}, so the property is preserved.

122 CHAPTER 7. SHARED MEMORY

3: The proof is by contradiction. Suppose 3i 3 j such that i E s.checked3 and j E s.checked,.

Without loss of generality, suppose that I E s'.checkedj, and let 7r be the action that

adds j to checkedi. (By the induction hypothesis, we know that j 0 s'.checkedi.) The

only possibility for ir is FinalCheck(j)i. By the transition relation, r can only add j to

checked, if s'.control[j] $ 2. However, by the induction hypothesis (Fact 2), we know that

s'.stage. E {final-check, failed, crit}, since s'.checkedj $ {j}. Therefore. by Fact 1, we

know that s'.control[j] = 2, a contradiction.

4: Recall. from the definition, that i E ready(s) iff s.stagei = crit V [s.checkedil = n. By

a pigeonhole argument, the fact clearly holds when fs.checked,[= n. If s'.stagei $ crit,

then the only possibility for 7r to make s.stagei = crit is the Crit, action. That action

has as a precondition that Icheckedil = n, and does not change the value of checkedi.

Therefore, the property is preserved. If 3'.stagei = crit, then the only possibility for ir to

make Is.checkedil 5 n is UserExiti, but this also results in stage = exit.

5: If s'.stagei E {control2, final-check, failed, crit, exit, done}, then by the inductive hypoth-

esis. s'.ki = i. Furthermore, the only action which can change ki is a Read, action, which

is only enabled if stage, = read, so s.ki = s'.k = i. If s'.stagei g {control2, final-check,

failed. crit, exit, done), then the only possible action for 7r which could cause s.stagei to

be in that set is a Readi action. (Lemma 7.16 rules out UserExiti.) However, the Read,

action can only set s.stagei = control2 if s.ki = i. Thus, the property is preserved.

All five facts hold in state s. U

We can now show that no two processes may be in (or about to enter) their critical sections.

Theorem 7.18: If s is a state of system S, Iready(s)l < 1.

Proof. By contradiction. Suppose that Iready(s)I > 1. Then by Fact 4 of Lemma 7.17, there

must exist two processes pi and p3 such that s.checkedi = s.checkedj = {1,2, ...n}. However,

this contraJjcts Fact 3 of Lemma 7.17. U

It follows that the algorithm satisfies mutual exclusion.

Corollary 7.19: Let a be a well-formed execution of system S. Then Vi,j E 1, if Criti and

Critj occur in a (in that order), then UserExiti occurs between dhem.

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 123

Proof: By well-formedness and inspection of the code for system S, if a Crit, action occurs in

a then stagei = crit in all states up until the next UserExit, action. Suppose (for contradiction)

that there exist two processes pi and pj such that Criti and Crit2 occur in a (in that order)

and no UserExit, occurs between them. Then after Critj occurs, stagei = crit and stagej =

crit. However, by Theorem 7.18 and the definition of ready, this is impossible. U

7.2.4 Progress Proof

In this section. we show that Dijkstra's algorithm makes progress: if a process is attempting to

enter the critical section, then eventually it or some other process will enter the critical section.

We define a "no-progress execution" of system S and then show that no such executions exist.

The proof is by contradiction: We define a well-founded variant function, or progress metric.

Then we show that in no-progress executions the function is nonincreasing and must eventually

decrease. Since no infinite-length decreasing chains are possible, this shows that no-progress

executions do not exist. The notion of fairness, which we inherit "for free" from the original

I/O automaton model, is used to show that the variant function eventually decreases.

Let "y = c/3 be a fair well-formed user-live execution of system S. Furthermore, let none

of the following actions occur in 3: UserTry, Crit, UserExit, Rem. If 3 begins with a state in

which some process has stage 5 remainder, then 0 is said to be a no-progress execution suffix

and -y is said to be a no-progress execution.

Lemma 7.20: Let /3 be a no-progress execution suffix, and let a be a state in 0. Then Vi E 7,

s.stage, {crit, exit, done}.

Proof: Immediate from the definitions of no-progress execution suffix, fairness, and pi. m

Before defining the variant function, we identify an important predicate on system states. If

s is a state of S, we say that s is consistent, denoted consistent(s), iff for all i E 1, contender(i, s)

= s.k, = s.k.

We now define the variant function. Given state s of system S, we define

f(s) = (A, B, C, D, E,F,G,H, I,J, K),

where each tuple component has the nonnegative integer value defined as follows:

124 CHAPTER 7. SHARED MEMORY

A = Ili: s.stagei = try}l.

B = I{i: s.stagei = read}1 if -contender(s.k,s),

0 otherwise.

C = [{i s.stagei = check A -'contender(s.k:.s)}[.

D = 0 if contender(s.k, s), 1 otherwise.

E = Ili s.stagei = set)).

F = Ili s.stage, = control2 A i $ s.k}I.

G = I{i s.stage, = final-check A i s.k}l,.

H = I{i contender(i, s) A ki 0 s.k}j.

I = Ei(n - !checkedI), for all i 9 s.k such that

s.stagei = final-check.

J = I{i : s.stagei = failed A i $ s.k}l.

K = n if (-'consistent(s) V s.stage,.k 0 final-check),

n - Icheckeds.kl otherwise.

We define a lexicographic total order on the elements in the range of f. We will show that

f is nonincreasing and will eventually decrease in a no-progress execution suffix, but first we

explain the components of f. The components A, E, F, G, and J simply count the number

of processes in a certain stage (in some cases ignoring the process whose index is the value

of the shared variable k). These components measure progress of the contenders through the

different stages of the algorithm. Components B and C serve a similar purpose for the "read"

and "check" stages, but are more complicated because contenders may cycle through these two

stages while they wait for some other process to "get out of the way." Component B's purpose

is to count the number of processes in the "read" stage; however, when the shared variable k is

the index of a contender, B = 0. In this way, the value of B does not increase when a contender

"backs off" to read k again. Component C counts the number of processes in the "check" stage

whose local k variables contain indices of non-contenders.

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 125

Component D becomes 0 when the shared variable k is set to the index of a contender, and

remains 1 otherwise. Components I and K both count down the number of indices that are

missing from the checked sets of processes whose stage is "final-check." Component I hold the

sum of this count for all the contelders whose indices are not equal to the shared variable k.

Component K holds this count for the (at most one) contender whose index is equal to the

shared variable k, but only starts counting down after all other contenders are "out of the way."

meaning that their local k's are equal to the shared k.

In studying the variant function, two important progress "landmarks" should be noted. The

first is when component D reaches 0. after which point the value of k is always the index of a

contender. After D reaches 0, the second landmark is when component H reaches 0. meaning

that all later states are consistent. After this point, all processes other than Pk cannot escape

the Read-Check cycle, so nothing stands in pk's way.

We now show that the value of the variant function f is nonincreasing in no-progress exe-

cution suffixes, and that only certain steps leave f unchanged.

Lemma 7.21: Consider any state s' in 3, a no-progress execution suffix. If action ir of process

pi occurs from state s' producing state s, then the following conditions hold:

1. f(s') 2 f(s), and

2. either f(s') > f(s) or one of the following hold:

(a) r is a Read action and's'.ki = s'.k, a contender, or

(b) r is a Check action and s'.ki is a contender, or

(c) 7r is a Try action, i = s'.k, and s'.stagei = failed, or

(d) 7r is a Control2 action and i = s'.k, or

(e) 7r is a FinalCheck action, i = s'.k, and

-'consistent(s').

Condition (1) says that the variant function is nonincreasing. Condition (2) says that every

action must decrease the variant function, except for a few special cases. Exceptions (2a) and

(2b) handle the case of a process cycling through the "read" and "check" stages, waiting for

126 CHAPTER 7. SHARED MEMORY

some other process to get out of the way. Note the relationship between items (2a) and (2b)

and the variant function components B and C, respectively. A process does not make progress

when it reads the same value of the shared variable k that it read the previous time. Similarly,

a process does not make progress if it discovers that the control variable corresponding to its

local k is nonzero. Exceptions (2c), (2d), and (2e) pertain only to the contender whose index

is the value of the shared variable k. Process Pk may "back off" several times before it finally

enters the critical section, and the variant function is carefully constructed not to change when

k backs off. These last three exceptions are the necessary result.

Proof: By case analysis. For each possible action, we note the changes in the components

of the variant function f. (We will use A' and .4 to denote the first components of f(s') and

f(s), respectively. Similarly for B' and B. etc.) Each case may be verified by Lemma 7.20 and

inspection of the preconditions and effects of the action under consideration.

" If 7r = (v', Tryi, v), there are three cases:

(1) If s'.stage, = try, then A' > A, decreasing f.

(2) If s'.stage, = failed and i 5$ s'.k, then J' > J, and no components increase. (Compo-

nent B cannot increase because Fact (5) from Lemma 7.17 tells us that if stage, = failed,

then k, = i, a contender by definition.) Therefore, f is decreased.

(3) If s'.stagei = failed and i = s'.k, then f(s') = f(s), satisfying Condition 1 and excep-

tion 2c.

* If 7r = (v', Readi, v), there are three cases:

(1) If s'.k is not a contender, then B' > B and A is unchanged, so f decreases.

(2) If s'.ki $ s'.k, then H' > H and no higher order components are increased, so f

decreases.

(3) If s'.ki = s'.k, a contender, then f(s') = f(s), satisfying Condition 1 and exception

2a.

" If ir = (v', Check(j)j, v), there are two cases:

(1) If s'.k, is a contender, then f(s') = f(s), satisfying Condition 1 and exception 2b.

(2) Otherwise, C' > C, and A and B are unchanged, so f is decreased.

7.2. EXAMPLE: DIJKSTRA'S MUTUAL EXCLUSION ALGORITHM 127

* If r = (v', Set, v), then B = 0. D = 0, E' > E, and A and C are unchanged. Therefore

f decreases.

o If r = (v', Control2i, v), there are two cases:

(1) If i = s'.k then f(s') = f(s), satisfying Condition 1 and exception 2d.

(2) Otherwise, F' > F and no higher order components are changed, so f decreases.

* If r = (v', FinalCheck(j)i, v). there are three cases:

(1) If i 5 s'.k, then I' > I and no higher order components are changed, so f decreases.

(2) If i = s'.k ahd -,consistent(s'), then f(s') = f(s), so Condition I and exception 2d are

satisfied.

(3) If i = s'.k and consistent(s'). then K is the only component that may change. Suppose,

for contradiction, that K does not decrease. By the effects of FinalCheck and the definition

of K. the only way for this to happen is for s'.control[j] = 2. If s'.control[j] = 2, then

Fact 1 of Lemma 7.17 tells us that s'.stage[j] E {final-check, failed, crit, exit). Therefore,

by Fact 5 of the same Lemma, s'.kj = j. Since s' is consistent, s'.kj = s'.k, and we have

stated that s'.k = i. So, by transitivity, j = i. By the preconditions on FinalCheck,

j s'.checkedi. But i E s'.checkedi, since i E checkedi initially and no action may remove

it from that set. Therefore j 5 i, a contradiction.

In each case, the Lemma holds. The set of cases is complete by Lemma 7.20 and the definition

of a no-progress execution. N

We have just shown that the value of the variant function f never increases in a no-progress

execution suffix, and that only certain steps leave its value unchanged. Now we will show that

a fair execution cannot proceed using only those certain steps, so the function must eventually

decrease.

Corollary 7.22: Let a be a no-progress execution suffix. Then f must eventually decrease in

a.

Proof: Suppose that f is fixed in a', a suffix of a. Then, by Lemma 7.21 for all states s'

of a', if 7r occurs from s', then one of the following hold:

* i" is a Read action and s'.ki = s'.k, a contender, or

128 CHAPTER 7. SHARED MEMORY

" 7r is a Check action and s'.ki is a contender, or

" ir is a Try action, i = s'.k, and s'.stagei = failed, or

" 7r is a Control2 action and i = s'.k. and

" r is a FinalCheck action, i = s'.k, and -'consistent(s').

Since no action in a' is a Set action, the shared variable k is fixed in a'. Fairness tells us that

all contenders must continue taking steps. (Inspection of the code will reveal that a contender

always has some step enabled.) Therefore, by the four conditions above, all contenders other

than Pk must have stage E {read. check); otherwise their steps would decrease the value of f,

contradicting our assumption that f is fixed. Therefore, by the same fairness argument, a Read

action must eventually occur for each of these contenders, after which point its local value of k

matches the shared k.

Let a" be the suffix of a' after which all contenders other than Pk have their local k's equal

to the shared k. Now, consider Pk, which must continue to take steps in a", and let s" be a state

in a" from which pk takes a step. If pk takes a FinalCheck step, then by Fact 5 of Lemma 7.17,

s".kk = s".k. However, this implies that s" is consistent. Therefore, the conditions above imply

that no FinalCheck actions can occur. If pk takes a Control2 step, then a FinalCheck action

will become enabled and remain enabled until it occurs, so fairness tells us that a FinalCheck

action will eventually occur, but we have just ruled this out. The only remaining actions for

Pk are Read, Check, and Try. If Pk takes a Read step, then it will observe that the shared k

contains its own index and proceed to stage = control2, meaning that it must eventually take

a Control2 step, which we have already ruled out. If pk takes a Check step, then since (by

statement 2 above) s".kk is a contender, it will proceed to stage = read, meaning that it must

eventually take a Read step, which we have just ruled out. Finally, if Pk takes a Try step, it

will also proceed to stage = read. Therefore, if Pk continues to take steps, it eventually will

decrease the value of f, giving us our contradiction.

Our main liveness result follows immediately.

Theorem 7.23: The set of no-progrcss executions for Dijkstra's algorithm is empty.

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 129

Proof: By Lemma 7.21, we know that the value of the variant function f is nonincreasing

in a no-progress execution suffix. Furthermore, by Lemma 7.22, the value of f never reaches a

fixed point. Therefore, since f cannot infinitely decrease, the theorem holds. 0

Finally, we show that the above theorem implies that Dijkstra's algorithm satisfies the required

progress property.

Corollary 7.24: Let a be a fair well-formed user-live execution of system B. Then either

Viali ends with Remi, or 3i such that ali is infinite.

Proof: By contradiction. Suppose that a is finite and that there exists some 1 E I such that

all does not end with Remi. Then there exists a suffix of a in which pi has stage 5 remainder

and ali is empty for all i. This is a no-progress execution suffix, by definition. Therefore a is

a no-progress execution, which is a contradiction of Theorem 7.23.

7.3 Proofs for Shared Object Systems

It is convenient to use shared atomic objects as system components when building large con-

current systems. Each operation on an atomic object appears to execute indivisibly, thereby

allowing the programmer to consider only interleavings of the operations, rather than their true

concurrency. For performance reasons, however, it is often useful to allow concurrency between

operations on a single object, so the condition of atomicity is only on an object's behavior, not

on its implementation.

There are two general approaches to modelling shared objects. Which is more natural

depends upon whether the intent is to model a system that uses atomic objects, or one that

implements them. In a system that uses atomic objects, it is convenient to represent each

operation as a single shared action between the object and the invoking process; we call these

atomic access systems. In a system that implements atomic objects, each operation can be

modeled by an invocation event and response event, denoting, respectively, the beginning and

end of operation execution; we call these invocation-response systems.

In an invocation-response system, it is possible to consider operation executions that overlap

in time. Herlihy and Wing [30] use this model to define a correctness condition called lineariz-

ability that extends Lamport's notion of atomicity for reads and writes [36] to arbitrary data

130 CHAPTER 7. SHARED MEMORY

types. Linearizability requires that in any (concurrent) execution, each operation "appears" to

take effect instantaneously, sometime between the invocation and response events of the oper-

ation. Linearizability is also similar to Lamport's sequential consistency [35], but requires that

if two operations on a given object do not overlap in time, then the order in which they "ap-

pear" to occur is consistent with the order in which they actually occur. And unlike sequential

consistency, linearizability has a locality property: if each object is linearizable. then the entire

system is linearizable.

In this section, we take the linearizability notion one step further, and show that a lin-

earizable invocation-response system is equivalent to an atomic access system. In particular.

we show that if the objects in the invocation-response system are each linearizable, then every

behavior of the entire invocation-response system is a behavior of the atomic access system.

Thus, in reasoning about complex systems. it is possible to consider overlapping operation ex-

ecutions at one level of abstraction, and shared atomic actions for the same operations when

reasoning at higher levels of abstraction. This is an important benefit of using a model that

unifies invocation-response and atomic access in a single formal framework. In addition, we ex-

tend the work of Herlihy and Wing by treating not only safety properties of invocation-response

systems, but liveness properties as well.

These results are intended to be used for reasoning about multiprocessor programs, in

which the shared memory is assumed to be atomic and the program is modularized by layers

of linearizable concurrent objects. They may also be useful in showing that memory systems

themselves are atomic, e.g., complex cache-coherence algorithms could be modeled explicitly,

and a proof that such a system is linearizable would justify claims that the programmer can

ignore details of the memory system.

We begin, in Section 7.3.1 by describing the basic architecture of an invocation-response

system, including the interfaces and specification mechanisms for the objects and processes.

Then, in Section 7.3.2, we describe three systems: a concurrent system, a sequential system,

and an atomic system. All three systems are described in the I/O automaton model. We show

that if the objects of the concurrent system are linearizable and if the processes obey certain

well-formedness restrictions, then each of these systems "simulates" the next. This gives us

a unified theory for describing systems in terms of invocations and responses, but reasoning

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 131

about them in terms of atomic accesses.

7.3.1 Invocation-Response Systems

We are interested in studying systems in which processes invoke operations on objects and

then wait for the objects to respond. In this section, we define a general architecture for

invocation-response systems (or IR systems). Later, this architecture will be used to define

two systems: System C, a concurrent system containing linearizable objects, and System B. a

sequential system used as a stepping stone in our proof. A different structure will be used to

define System A. an atomic shared memory system that will form the basis of our correctness

condition.

An IR system consists of a set of processes and a set of objects, where each process and

each object is modelled as an I/O automaton. Processes may request operations on objects by

issuing "invoke" actions. These actions are inputs to the objects, which issue "respond" output

actions after performing the requested operation. The interface at the boundary between a

process and its environment is analogous to the interface at the boundary between an object

and a process. To request that the system perform a particular function, the environment

may "invoke" operations on a process, which later replies to the environment with a "respond"

action. Here, we consider systems of only three layers: the objects, the processes, and the

environment. However, by modelling the interaction between a process and the environment

in the same way as the interaction between an object and a process, we set the stage for

constructing complicated objects hierarchically. That is, one might compose a collection of

objects and processes, and treat the composition as a single object. To describe the set of

operations that may be invoked on an object or process, we define an "interface type." An

interface type T consists of:

" ops(T), a set of operation names, and

" for each operation p E ops(T),

- args(p), the domain of arguments to the operation, and

- rets(p), the domain of return values of the operation.

132 CHAPTER 7. SHARED MEMORY

The operation names identify the operations that may be invoked on the corresponding object

or process. For each operation name, the domain of argument values specifies the allowable

operation arguments that may be supplied by the user of the object. Similarly, the return value

domain for an operation specifies the possible values that may be returned by the object as a

result of that operation. We will see shortly how the interface type of an object or process is

used to derive the signature of the corresponding automaton.

In IR systems, there are three kinds of components: the shared objects, the processes

that invoke operations on those objects, and the environment that directs the activities of the

processes. For the remainder of the chapter, we fix three sets of indices, 11, .7, and K. We use

the elements of I to name the objects in a system. and we use the elements of .1 to name the

processes. An IR system is modelled as the composition of an object automaton o, for each

i E ", and a process automaton pj for each j E J. The indices in K identify the processes

(or users) that constitute the environment of a system. We do not model the environment

explicitly, but simply use the elements of K to refer to its components. One may think of these

components either as I/O automata or as users interacting with the system. We require that

the environment, as a whole, obey certain well-formedness restrictions on its interactions with

each process. Informally, we require that the environment wait for a process to respond to a

request before making a new request of that process.6 If several components in the environment

may make requests of the same process, then those components must cooperate (possibly by

participating in a mutual exclusion protocol) in order to ensure that well-formedness is preserved

at that process. We now define the objects and processes of IR systems.

Objects

Each object automaton oi,i E 1, has an associated interface type, denoted type(i), and the

signature of oi is determined from this interface type. For each i E 1, we define sig(o,) as

follows:

Input Actions: invokeij(p,a),j E J, p E ops(type(i)) and a E args(p)

Output Actions: respondij (p, a, r), j E J, p E ops(type(i)), a E args(p), and r E rets(p)

The subscripts on each action identify the object automaton oi at which the operation occurs

6 A similar idea appears in [45] on page 79.

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 133

and the process automaton p, responsible for the request. The following definition is useful for

describing executions of o,. Let a be an execution of oi. We say that a is input well-formed iff

Vj E J, no two invoke .j actions occur in a without a respondij action between them.

Processes

Each process in an IR system is modelled as an I/O automaton pj, j E J, that has an asso-

ciated interface type, denoted type(j). The interface type describes the set of operations that

may be invoked on a process. In addition, a process may itself invoke operations on objects.

Therefore, its signature not only contains actions corresponding to operations in its interface

type, but also invoke and respond actions corresponding to tile interface tvpes of the objects

that it may access. For each j E J, we let obj(j) g 1 denote that set of objects that p, may

access, and define the signature of p, as follows:

Input Actions: invoke,,k(p,a), where k E K,p E ops(type(j)) and a E args(p)

respondi.j(p, a, r), where i E obj(j),p E ops(type(i)), a E args(p),

and r E rets(p)

Output Actions: respondjk(p, a, r), where k E K, p E ops(type(j)), a E args(p),

and r E rets(p)

invokei,,(p, a), where i E obj(j),p E ops(type(;)) and a E args(p)

In reasoning about the schedules of a process in an IR system, it will be helpful to distinguish

those actions that are shared with the objects from those shared with the environment. Let 0

be a s quence of actions of pi. We define /31 to be the subsequence of 3 containing exactly the

invokeij and respondj actions, for all i E I. Similarly, we define 01K to be the subsequence of

0 containing exactly the invokejk and respondj,k actions, for all k E 1C.

As mentioned earlier, we constrain the interaction between a each process and the en-

vironment so that a process receives no inputs from the environment while the process has

an outstanding request. That is, we want the invocations and responses at the environment

boundary of each process to alternate, where each response is appropriate for the preceding

invocation. For this purpc se, we use the following definition. If -Y is a sequence of actions,

j E 3', and 0 yipIj, we say that 7 is externally well-formed for j iff/31K is an alter-

134 CHAPTER 7. SHARED MEMORY

nating sequence of invoke and respond actions. beginning with an invoke action, such that

Vk E]C,Vp E ops(P,),Va E args(p),Vr E rets(p), each respondik(p,a,r) action is immediately

preceded by an invokejk(p, a) action. We say that 7 is externally well-formed iff it is externally

well-formed for all j E ,J. An execution is externally well-formed iff its schedule is well-formed.

In externally well-formed sequences, we think of a process as being "active" in the inter-

val between receiving an invocation and generating a response. More formally, let 3 be an

externally-well formed sequence of p, j E ,J. If 3' is a prefix of 3, we say that p, is active after

3' iff 3'IYK ends with an invoke action. It is important to notice that in externally well-formed

executions, a process receives no inputs from the environment while it is active.

The processes in an IR system model the specific application program that accesses the

objects. Therefore, in stating the general definition of an IR system, we do not explicitly define

the process automata. However, we do require that each pj, j E ,J preserves the following

well-formedness condition. Let j be a sequence of actions, and let Oj = J31p,. j E ,J. We say

that 3 is uell-forrned for j iff the following conditions hold:

* 3 is e::ternally well-formed for j.

* Every action in 3 ,1.1 occurs from a prefix of 3j after which pj is active.

e The sequence 3,11 is an alternating sequence of invoke and respond actions, beginning

with an invoke action, such that Vi E IVp E ops(type(i)),Va E args(p),Vr E rets(p),

each respond,,(p. a, r) action is immediately preceded in 30 by an invokei,j(p, a) action.

So, in order to preserve well-formedness, pj must respond at most once to each request from the

environment, and it may invoke operations on objects only in the interval between a request

from the environment and its response to that request. Furthermore, if p. invokes an operation

on an object, it may not produce any output actions until the corresponding response from that

object occurs. Note that the third condition implies that pj preserves input well-formedness in

3 for all i E ".

7.3.2 Simulating Atomic Access Systems with IR Systems

At the beginning of Section 7.3, we stated that an important problem in programming mul-

tiprocessor systems is to build IR systems containing concurrently accessed shared objects in

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 135

such a way that the environment cannot distinguish them from atomically accessed shared

memory systems. In this section. we take advantage of ability to study both shared memory

and message-passing systems in the I/O automaton model in order to show a formal corre-

spondence between systems containing concurrently accessed linearizable objects and systems

having atomically accessed shared memory. We present three systems. The first is an IR sys-

tem (System C) that models the system containing concurrently accessed linearizable objects.

The second system, derived from the first, is an IR system (System B) in which at most one

operation is in progress at each object at any time. Finally, we present an atomic access system

(System A) that corresponds to system B. but implements the objects in atomically accessed

shared memory. We show that the fair behaviors of System C are contained in those of System

B. and that the fair behaviors of System B are contained in those of System A. This serves to

formalize the notion that systems containing linearizable objects "simulate" those in which the

objects are implemented in atomic memory. We begin with an overview of the three systems.

System C is the concurrent invocation-response system that we wish to prove simulates

an atomic memory system. It is an IR system, so each process of System C has an interface

type, the appropriate signature for that type, and is required to preserve well-formedness. In

addition, the processes must satisfy a property that implies that objects eventually respond

to all operation requests. In order to define the objects of System C, we present a natural

definition for a "sequential specification" of an object and define formally what it means for an

object to be a "linearizable implementation" of such a specification. We require that each object

of System C is described by a sequential specification and is constrained to be a linearizable

implementation of that specification. But aside from the above restrictions, the processes and

objects of System C are completely general. We do not use any information about the particular

sequential specifications or implementations of the objects in order to prove our results. In this

way, our results hold for any IR system with linearizable objects.

As we have said, our notion of correctness is that every fair behavior of System C should be

a fair behavior of a system in which the objects are accessed atomically (as opposed to separate

invocations and responses). In other words, System C should "simulate" a system in which the

objects are implemented in an atomic shared memory. Rather than showing this simulation

directly, we construct an intermediate system in which the processes are the same as in System

136 CHAPTER 7. SHARED MEMORY

C, but in which the objects are constructed explicitly from their sequential specifications. This

intermediate system, called System B. is used as a stepping stone in the proof. We show that

for every fair execution of System C. there is a fair execution of System B having the same

external behavior, and in which each invocation of an operation on an object is immediately

followed by the corresponding response.

Finally, we construct System A, the atomic system that forms the basis of our correctness

condition. System A consists of a set of processes that perform atomic accesses on a shared

memory. The system is constructed from the processes of System C and the sequential specifi-

cations of the objects. We show that for every fair execution of System B in which invocations

are immediately followed by their corresponding responses, there is a fair execution of system

A with the same behavior. The two simulation arguments (that System C simulates a certain

class of executions of System B, and that those executions correspond to executions of System

A) are combined to complete the proof.

System C

In this section, we define System C, the IR system that we wish to prove correct. System C

is the composition of a collection of linearizable objects and processes that we wish to show

behaves correctly. The automata in System C are not given to us explicitly, but are guaranteed

to satisfy certain properties. From the definition of an IR system, we know that in System C

each process automaton pj, j E ,J, preserves well-formedness. Furthermore, we will assume

that each object in System C is a "linearizable implementation" of a "sequential specification".

In addition, we will make an assumption about liveness in System C. We begin by defining a

sequential specification, and say what it means to be a linearizable implementation of one.

For each i E 2, we fix a sequential specification Si consisting of the following information:

* states(i), a set of states containing a set of initial states init(i).

* two predicates for each operation name p E ops(type(i)):

- predicate Pp on elements from args(p) x states(i), and

- predicate Q, on elements from args(p) x states(i) x states(i) x rets(p).

7.3. PROOFS FOR SHARED OBJECT SYSTEM\fS 137

This means that if a E args(p) is the argument to operation p, x' E states(i) is the "current

state" of object 0, and the predicate P1, holds on a and x', then there exists an x E states(i)

and an r E rets(p) such that Qp(a.x'.x.r) is true. The value x becomes the current state of

O following the operation, and r is returned by the operation. For arguments a and states x'

for which P,(ax') does not hold, the new state and return value are unspecified. In Larch

specifications[8], this information is conveniently represented in the following way:

p = proc(a:args(p)) returns (r:rets(p))

pre: P,(a. x')

effect: Qp(a.x'.x, r)

Having defined a sequential specification. we now wish to define what it means for the object

automata of System C to be linearizable implementations of their sequential specifications.

Borrowing a technique from [41], we construct a particular automaton, called a "sequential

object" that captures the meaning of a sequential specification. The sequential object construc-

tion will be used not only to define a linearizable implementation of a sequential specification,

but also to define System B.

We capture the meaning of each sequential specification S,, i E 1, with a sequential object

automaton a,. The sequential object automaton a, has signature sig(o,) and the following

state components: current E states(i), user E 3' U 1, op E ops(type(i)) U ._, and arg E

UpEopa(type(M) args(p) U -. The component current holds the "current state" of the object, and

is initially in init(i). The component user, initially 1, is the index of the process currently using

the object. Components op and arg hold the name and argument of the operation in progress;

initially, these are both .L. The transition relation for the sequential object automaton is given

in Figure 7-2. The partition of ai consists of a single class containing all the output actions of

a,.

When an invocation occurs at ai, the automaton simply stores the id of the process making

the request, the name of the operation, and the values of the arguments to the operation.

Whenever an operation has been requested but the response has not yet occurred, ai may

respond to the request, supplying a return value consistent with the sequential specification

and resetting the user. op and arg components to their initial values.

138 CHAPTER 7. SHARED MEMORY

" invokeij(p,a)
Eft: s.user = j

s.op= p
s.arg " a

* respondi.j(p, a, r)
Pre: s'.user = j

s .op = p
s'.arg = a
P,(a, s'.current)

Eft: Q (a, s'.current, s.current, r)
s.user = 3
s.op = 3
s.arg = _

Figure 7-2: Transition relation for sequential object automaton ai.

Next, we would like to define what it means for an automaton to be a linearizable implemen-

tation of sequential specification Si. But first we need to define a particular class of executions

of ai. We say that a is a sequential execution of ai iff sched(a) is an alternating sequence of

request and respond actions.

We can now define linearizability. We say that oi is a linearizable implementation of Si iff

for all input well-formed fair executions a of oi, there exists a sequential fair execution a' of ai

such that for all j,j' E J,

1. a'lpj = alp, and

2. if a respondij, event ir' precedes an invokeij event r in a, then r' precedes 7r in a'.

Informally, the first condition says that each individual process cannot distinguish a from a'.

The second condition says that if the invocation-response intervals of two operations at an

object do not overlap in a, then they must occur in the same relative order in a' as they do in

a.

For every i E ., we require that oi in System C is a linearizable implementation of Si. Note

that the linearizable implementation requirement is a local property of each object, and not

a property of the system as a whole. We will consider global linearizability properties after

defining System B.

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 139

Our final assumption about System C concerns liveness. We require that all externally well-

formed executions -y of System C are response-live, meaning that for all i E 1, for all j E 3',

for all p E ops(type(i)), for all a E args(p), if r = invokeij(p,a) occurs in -y, then there exists

a state s after 7r such that some respondc* action is enabled from each state after s until such

an action occurs. With this assumption, we get the following liveness result:

Lemma 7.25: Let y' be an externally well-formed fair execution of System C. Then for all

i E 1. for all j E ,, if an invokei,3 action occurs in Iy then a respondij action occurs later in y.

Proof: Immediate from the definitions of response-live and fairness. U

Notice that we could have imposed a condition stronger than response-liveness by pro-

hibiting partial operations in sequential specifications entirely. (Prohibiting partial operations

would ensure, by the definition of ai and linearizability, that each object eventually responds to

each request.) However, in order to allow modelling a class of systems in which the processes

cooperate to ensure that operations are invoked only when appropriate, we choose to take a

more general approach, in which the system must guarantee that a response eventually occurs

for each request. For example, an object might be responsible for granting permission to use

a shared resource (a lock) so that no two processes have permission simultaneously. Such an

object could have two operations, one for requesting the lock and another for releasing it. If

one process requests the lock while a second process process is holding the lock, then the object

cannot respond to the request until the second process releases the lock. Thus, the operation is

partial, but as long as processes are guaranteed to eventually release the lock, then all requests

can be satisfied.

A special case of the response-live property is one that says that for all i E 1, for all j E ,

for all p E ops(type(i)), for all a E args(p), if r = invokei,(p,a) occurs in -Y, then some

respond,j action is enabled from each state after r until such an action occurs. In other words,

if an object has partial operations, then (1) they are invoked only in states for which they are

defined, and (2) if an operation is pending at a process, then no state change occurs to prevent

a response to that operation. Although this property is stronger than the response-liveness

property, it is a safety property and may be easier to prove when it is applicable.

140 CHAPTER 7. SHARED MEMORY

System B

Rather than directly showing that System C simulates an atomic access system, it will be

convenient to define an intermediate system, System B. We define System B to be identical to

System C except that for all i E ,, each object automaton oi is replaced by ai, the sequential

object automaton corresponding to the sequential specification Si.

Let 03 be an execution of System B. We say that 0 is a sequential execution of Sys-

tem B iff for all i E I, Ojai is a sequential execution of ai and no actions occur in 03 be-

tween each request/response pair of Ojai. So, Oil consists of an alternating sequence of in-

voke and respond actions, beginning with an invoke action, such that Vi E I,,Vj E J,Vp E

ops(type(i)), Va E args(p), Vr E rets(p), each respondij(p, a, r) action is immediately preceded

by an invokeij(p, a) action. We now prove our first simulation result.

Lemma 7.26: Let -f be an externally well-formed fair execution of System C. Then there

exists a sequential fair execution / of System B such that for all j E J,,31pj = Ylpj.

Proof:7 From the definition of System C, all processes pj, j E J and objects oi, i E I

preserve well-formedness. Therefore, since 7 is externally well-formed, we know that for all

j E 7, 7[pj is well-formed. Recall this means that:

* Every action in yj12" occurs from a prefix of -tj after which pj is active.

" The sequence yj,2" is an alternating sequence of invoke and respond actions, beginning

with an invoke action, such that Vi E 1,Vp E ops(type(i)),Va E args(p),Vr E rets(p),

each respondij (p, a, r) action is immediately preceded in -ti by an invokej,(p, a) action.

The second condition induces a total order <j on the operations invoked by pi, and by

Lemma 7.25, we know that each invocation has a matching response. Furthermore, since each

object in System C is linearizable, we know that for each i E .1, we can fix a fair execution yi

of a, such that for all j,j' E J,

1. -lp = (ytoi)Ipi, and

2. if a respond, event ?r' precedes an invoke,, event r in -t, then lr' precedes 7r in 7i.

7This proof follows closely the proof of a similar theorem in [30] and uses ideas from [45], page 78, to treat
the actions of the environment.

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 141

Each yi induces a total order <i on the operations invoked in oi in -f.

In order to show that the execution 3 exists, we first show that there exists a total order

<T on all the operations invoked in -f that is consistent with all the total orders <j,j E 3 and

<i, i E I. It is sufficient to show that the transitive closure -.< of the union of all <J,j E 3 and

<i,i E I is a partial order. Suppose not. Then there exists some cycle in -<. We know that

the cycle must involve a pair of operations ordered by <j for some j E J. Otherwise, all the

operations in the cycle would be ordered by the same <,,i E 1, an immediate contradiction,

since <i is a total order. Let op, and op2 denote the two operations ordered by <j in our cycle,

and without loss of generality, let op, <j oP2. This means that the response for op, occurs

in -y before the invocation of op2. Since op, and op2 are in a cycle, we also know that there

exists a sequence of operations opI, oP2 .. op-N with op, = opn such that the response of each

op, precedes the invocation of opm+1. But this means that the response of op, precedes the

invocation of op, in y, a contradiction.

So, to construct 0, we first construct the schedule of /3 by taking the sequence of the

invocation/response pairs in the order specified by <T, and then, for all j E 3, k E K, inserting

in all invokej,k and respondj,k actions appearing in y so that 31pj = i'Ipj. That is, we place each

invocation/response pair of the environment "around" the corresponding sequence of object

operations pairs, and place any invocation from the environment that is lacking a response

after the last object operation pair. Now, we know from the construction of <T that for all

i E 1, sched(3)Ioi = sched(-y)Ioi. Furthermore, by the construction of <T and the alternating

sequence condition of well-formedness for j, we know that for all j E ,, (sched(/3)IT)tpi =

(sched(y)1tf)ipj. And from well-formedness, we know that for all j E J, every action in 7Yi2.

occurs from a prefix of -ti after which pj is active. Therefore, we know that it is possible

to place the invocation/response pairs of the environment around the corresponding sequence

invocation/response object operation pairs so that for all j E J, sched(/3)Ipj = sched(-Y)1pj.

Now, since all processes and objects have the same schedules in /3 as in -Y, we can insert the

states of /3 so that for all j E J, the sequence of state transitions in 3 for pi is the same

in /3 as in -y. (In other words, because its schedule is the same, each process pi cannot tell

whether it is in /3 or in -y.) Since each object oi is a linearizable implementation of its sequential

specification, we know that for all i E 1, there exists a sequential fair execution /3, of ai with

142 CHAPTER 7. SHARED MEMORY

schedule sched(7)Ioi. Therefore, for each i E 1T, we let the sequence of state transitions of ai in

3 be as in 3i. For each object ai, we know that a response occurs in 3 for each invocation, so

Ojlai is fair. Since -t is fair and for all j E J,)3lp, = Pjp,, we know that /3pj is fair, for all j.

So, applying Lemma 2.1, we know that 3 is a sequential fair execution of System B. a

This result tells us that any externally well-formed fair execution of System C looks to the

environment as if it is a sequential fair execution of System B. Now, we would like to say that

any sequential fair execution of System B looks to the environment as if it is a fair execution

of a system in which the objects are implemented in atomically accessed shared memory. This

brings us to System A.

System A

In this section, we define System A. which forms the basis of our correctness condition. System

A is a system in which objects are modelled as variables in a global shared memory that is

accessed atomically by the processes. It is in the construction of System A (and the related

proofs) that we exploit the shared memory extensions of the I/O automaton model. They allow

us to model and reason about both the atomic access systems and the IR systems using a single

unified model.

In order to define System A, we need a general transformation that takes a process automa-

ton (as given to us in System C) and a set of sequential specifications (also given), and produces

a shared memory automaton that corresponds to the original process but accesses the objects

as atomic variables in a shared memory. We now define this transformation.

Given a process automaton pj that accesses shared variables using the invocation-response

mechanism as described above, we can construct an "equivalent" shared memory automaton sj

that accesses shared variables using atomic accesses to a shared memory. Since the transition

relation of the shared memory automaton must specify how the shared variables are updated,

the definition of sj depends not only upon the definition of pi, but also upon the sequential

specifications for the objects that pi accesses.

In order to change the style of variable access, we need to replace the invoke and response

actions in the signature by atomic shared memory actions. For all i E I, we let Xi denote

states(i), X = Ui1 l Xi, and Xi = X \ {Xi}. Automaton sj is defined as follows.

7.3. PROOFS FOR SHARED OBJECT SYSTEMS 143

" sig(s,) is the signature:

Input Actions: invokej,k(p, a). where k E A, p E ops(P.) and a E args(p)

Output Actions: respondj,k(pa, r), where k E K,p E ops(Pj), a E args(p),

and r E rets(p)

(v',pij(a), v), where V, v' E dom(X), i E 1, p E ops(type(i)),

and a E args(p).

" states(sj) = states(pj),

" start(sj) = start(p),

" steps(s.) = the set of all steps (s",r.s) such that either

1. 7r = invokej,k or respond3,k, k E K and (s",ir,s) E steps(pi), or

2. 7r = (v',pi,j(a),v),s) and 3r, s' such that

(a) (s", invokei,j(p, a), S') E steps(pi),

(b) (s', respondi,j(p, a, r), s) E steps(pi),

(c) Pp(a. v' X,) =*- Qp(a, v'jXi, vIXi, r), and

(d) vIXi = v'Xi.

" part(s3) = part(pj), except that each requestij(p,a) action is replaced the actions

(v',pi,(a), v).

A few words explaining the transition relation for si are in order. We include directly in

the steps of s3 each step of pj for a process invocation or a response to the environment (i.e.,

each step not involving an object access). In addition, we include shared memory steps that

correspond to invocation/response pairs for objects in System B. Conditions (a) and (b) say

that the state change that occurs at sj as a result of the atomic access corresponds to a state

change that can occur in pj as a result of the invocation/response pair. Condition (c) ensures

that the new value of the shared variable Xi is consistent with the sequential specification Si.

Finally, condition (d) says that no shared variables other than Xi are changed by the step.

Lemma 7.27: For all j E J, sj is a shared memory automaton for X.

Proof: Immediate from the definitions of I/O automata and shared memory automata. a

144 CHAPTER 7. SHARED MEMORY

We define System A to be the composition of the shared memory automata corresponding

to the process automata of System C, closed out on the entire set of shared variables. More

formally, C = C(liE7Jsj, X).

Lemma 7.28: Let 3 be a sequential fair execution of System B. Then there exists a fair

execution a of System A such that beh(a) = beh(O).

Proof: We "collapse" / to get a: Since 3 is a sequential execution, each object operation

invocation is immediately followed by its corresponding response. Therefore, to construct a,

for all i E 1, j E J, we replace each subsequence

S", invokei,j(p, a), s', respondi,j(p, a, r), s

in 3 by the corresponding step

(s",pij(a),) E steps(A)

in a such that for all j' E " . "[sj, s"pj, Jsj, = sjpj,, and for all i' E I, the values of X, in

s' and . match (s"Jai,).current and (slai,).current, respectively. From the definition of ai that

the state change at ai is between s" and s is consistent with the sequential specification Si.

Therefore, we know that the step (s", p(a),) must exist in steps(A). By the definition of s,, a

is an execution of A. To see that a is fair, we note that /3 is fair and each action (v', pij(a), v)

of sj is enabled exactly from those states in which requesti,j(p, a) is enabled in pj. 0

Our main result follows immediately.

Theorem 7.29: Let - be a fair execution of System C. Then there exists a fair execution a

of System A such that beh(a) = beh(-y).

Proof: Immediate from Lemmas 7.26 and 7.28.

Thus, we have shown formally that if the objects in an invocation-response system are each

linearizable, then every fair behavior of the entire invocation-response system is a fair behavior

of the corresponding atomic access system.

7.4. SUPPORTING SHARED MEMORY IN SPECTRUM 145

AUTOMATON mutex

STATE tuple(stage:string, checked:set(automatonid), k: automatonid)
SHARED tuple(control:mapping(automaton_id,integer), k: automaton_id)

CLASS
OUTPUT Read

PRE eq(s.stage,"read")

EFF s.k = v.k
ifthenelse(eq(s.k, self(0),

assign(s. stage, "control2"),
assign(s. stage, "check"))

Figure 7-3: Automaton type definition for a shared memory automaton.

7.4 Supporting Shared Memory in Spectrum

Although Spectrum does not currently provide support for the shared memory model extensions

described above, we were able to use Spectrum to simulate the example algorithm presented

in Section 7.2 by explicitly constructing the closed out automaton. The invariants and variant

function were mechanically checked for random executions of the algorithm. In particular,

Lemma 7.17 was checked mechanically for all states of random executions of the algorithm.

Furthermore, Lemma 7.21 (and earlier incorrect versions of it) was checked for random algorithm

executions. That is, for each step it was mechanically verified that either (1) progress was being

made (see Lemma 7.20), or (2) the variant function decreased, or (3) the variant function was

unchanged and one of the exceptions held.

However, all of this would have been simpler had Spectrum provided shared memory au-

tomata and a closeout operator. In this section, we suggest extensions to Spectrum that would

permit one to express and simulate shared memory algorithms.

Our first problem is to extend the Spectrum language to allow shared variables to be declared

in automaton type definitions. For this, we provide a new keyword, SHARED, that has the

same syntax as STATE declarations, but declares the names and types of shared variables.

The granularity of sharing is at the level of the components of the top level tuple. Figure 7-3

illustrates the syntax for shared memory automaton type definitions, and corresponds to a part

of the shared memory mutual exclusion algorithm shown in Figure 7-1. The shared variables

declared are control and k. In order to enforce the property of shared memory automata

146 CHAPTER 7. SHARED MEMORY

that an automaton must be prepared to observe any possible value in the shared memory, we

require that shared variables appear only in EFF clauses. Furthermore, we require that shared

variables are not modified in the EFF clauses of input actions, and a mechanism s is needed to

ensure that shared memory input actions observe the "prior" states of the shared variables. The

shared variables are referenced using the notation v. control and v. k, as in the EFF clause of

the read action shown, and we may close out on these separately if we like.

Just as for composition, we place the closeout operator in the user interface. First, we must

allow the user interface to call procedures in the loader for type checking purposes. Whenever

we add a new shared memory automaton type to a composed type, we must check that if it has

a shared variable declared with a given name, then either (1) none of the other automaton types

in the composition have a shared variable with that name, or (2) the corresponding variable in

the composition has the same data type. We modify the auxiliary windows for composed types

so that any shared variables are listed with their data types at the top of the window. To close

out on a particular variable in a composed type, one simply selects that variable in the window.

Repeatedly selecting the variable toggles between closing out on that variable or not.9 Those

variables on which one has closed out are highlighted in a different color.

Finally, changes are needed in the simulator for managing the shared variables. The loader

must be modified to recognize the SHARED keyword and the v. notation, perform the re-

lated type checking for shared variables, and enforce the requirement that shared variables are

referenced in EFF clauses only. In addition, the interpreter must keep, for each closed out au-

tomaton, the shared variables associated with that automaton and their values. The execution

loop and scheduler are unaffected.

7.5 Summary

In this chapter, we extended the I/O automaton model to allow modelling of shared memory

systems, as well as systems that include both shared memory and shared action communication.

The extended model was shown to support all types of atomic accesses to shared memory, from

$Such a mechanism might be saving a temporary copy of the shared variables, or saving for last the evaluation
the state transition for the automaton generating the output.

9Note that if a composed type is a component of yet another composed type, then deciding not to close out
on a variable would require type checking of the shared variables at the next level up to ensure compatibility.

7.5. SUMMARY 147

the very restrictive single-%,ariable reads and writes to operations on arbitrary abstract data

types. By building our shared memory model on top of I/O automata, we could take advantage

of the fairness definitions and compositionality properties already present in that model. This

resulted in a unified model with relatively few new concepts. An example algorithm, Dijkstra's

classical shared memory mutual exclusion algorithm, was presented in this mnodel and its safety

and progress properties were shown using standard assertional and variant function techniques.

Then, using the extended model, we showed a formal correspondence between systems contain-

ing linearizable objects and systems containing atomically accessed shared variables. Finally, we

proposed extensions to the Spectrum Simulation System for expressing and simulating shared

memory algorithms.

148 CHAPTER 7. SHARED MEMORY

Chapter 8

Superposition

Modular descriptions of distributed algorithms are sometimes most easily written in terms of

several program layers. Higher layers are allowed to make use of lower layers, but lower layers

are unaware of the higher layers. One layering mechanism, called superposition, is defined by

Chandy and Misra for the UNITY programming language [141. A UNITY program consists of a

set of statements that access a global shared memory. At each step in the execution, a statement

is selected and executed, possibly updating the memory. Superposition in UNITY is defined to

be a program transformation that adds a layer on top of a program, while preserving all the

properties of the underlying program. Essentially, the transformation modifies the underlying

program by adding a set of new variables and some extra code to make use of them. In order

to preserve the properties of the underlying program, the extra code does not modify the

original variables (although it may read them). Unfortunately, modularity is lacking in UNITY

because the interfaces between program modules are not described in terms of well-defined sets

of actions, but only iii terms of the program variables that they access. Therefore, one must

reason about programs not in terms of actions that occur at module boundaries, but in terms

of the memory locations that modules read and write. That is, one cannot treat a module as an

abstraction with a certain set of behaviors, but must must always be concerned with internal

state the module. In addition, UNITY has no notion of an action being an output of one

component and an input to another. We would like such a separation for describing distributed

systems.

Partly because of its separation of inputs and outputs, the I/O automaton model is partic-

149

150 CHAPTER 8. SUPERPOSITION

ularly natural for describing distributed systems. It permits writing precise problem specifica-

tions. clear algorithm descriptions, and careful correctness proofs. Unlike UNITY, communi-

cation in this model takes place entirely in terms of actions shared across module boundaries.

Each module has its own local state variables, unseen by other modules. The compositionality

results of the model make it possible to reason locally about system components in order to

prove properties about executions of the entire system. However, the I/O automaton model

does not provide a mechanism for constructing layered systems in which higher level modules

can observe the states of lower level ones. Thus, UNITY has a superposition mechanism but

little modularity, while I/O automata provide a great deal of modularity but no superposition

mechanism.

In this chapter. the I/O automaton model is extended to permit superposition of program

modules. Rather than viewing superposition as a program transformation, we view it as a

particular method for hierarchically combining separate program modules. When one module

is superposed on another, the higher level module is allowed to observe (but not modify) the

state of the underlying module, while the state of the higher level is unknown to the underlying

module. We define an operator for superposing one I/O automaton on another, and show that

superposition does not affect the set of executions of the underlying module, thus preserving

all properties of that module. A formal specification mechanism is presented that allows the

set of correct behaviors of the higher level module to be expressed in terms of the state of the

underlying module. As an illustration of the extended model, the global snapshot algorithm of

Chandy and Lamport [13] is presented with a complete proof of correctness.

A different approach to adding superposition to the I/O automaton model is presented by

Nour [511. In that work, a restricted class of I/O automata, called UNITY automata, is defined

in order to express UNITY programs as I/O automata. A superposition operator is defined

for this restricted class. Since UNITY automata are restricted to have output actions only, it

is not possible to model a superposition in which the higher level module may share actions

with the lower level module. In the present work, we do not need such restrictions. In fact, our

example algorithm makes important use of shared actions between layers.

In the preceding chapter, we extended the I/O automaton model in order to permit automata

to make make aiomic accesses to shared variables. The variables were modelled as being

8.1. SUPERPOSITION EXTENSIONS 151

completely external to the automata sharing them, so an automaton had to be prepared to

observe aity value in the memory whenever it executes an access. In this chapter, variables

are shared, but the sharing relationship is different. The higher level module sees the variables

of the lower level module at all times. It is not necessary for the higher level automaton to

execute a particular action in order to observe the values of those variables. Therefore, the set

of actions "enabled" in the higher level module may change as the lower level module updates

its variables. This sort of relationship cannot be modelled using the shared memory extensions

of Chapter 7.

The remainder of the chapter is organized as follows. In Section 8.1, we define the super-

position extensions and prove several properties of the extended model. This is followed by the

global snapshot example in Section 8.2. In Section 8.3, we propose extensions to the Spectrum

Simulation System to support superposition.

8.1 Superposition Extensions

In this section, we present definitions that extend the I/O automaton model for superposition of

program modules. We begin by defining what it means for an automaton to be "unconstrained"

for a particular set of variables, and use this definition to state the requirements for one au-

tomaton to be "superposable" on another. We then define the superposition operator, and

show that the superposition of one I/O automaton on another produces a new I/O automaton.

Therefore, all the standard definitions and results for I/O automata (for fairness, composition,

etc.) immediately carry over to superposed automata. Furthermore, we show that any fair

execution of a superposed automaton, when projected on the underlying module, is a fair exe-

cution of the underlying module. In addition, if no output actions of the higher level module

are input actions of the underlying module, then every execution of the underlying module

is a projection of some execution of the superposed automaton. These results correspond to

the notion from 114] that superposition preserves all properties of the underlying algorithm. In

addition, we show that when an automaton A is superposed on some other automaton, then the

set of schedules of the resulting automaton, when projected on the signature of A, is a subset

of the schedules of A alone. Finally, we present a mechanism, analogous to schedule modules

for ordinary I/O automata, that allows one to formally specify a problem to be solved by a

152 CHAPTER 8. SUPERPOSITION

higher level module in terms of the state of the lower level module. An example illustrating

these extensions is presented in Section 8.2.

Throughout this chapter, we refer to the state of an automaton as being divided into sets of

variables, where each set of variables takes on values from a particular domain. For example,

we may say that the state of automaton A is divided into two sets of variables X and Y with

domains dom(X) and dom(Y), respectively. In this case, we use an ordered pair (x. y) to name

a particular state of A, where x E dom(X) and y E dom(Y), and we take the set of possible

states of A to be the cartesian product dom(X) x dom(Y). If s is a particular state of A, we

let sIX denote the values of the variables of X in state s.

All extensions defined in the section are simply additions to the I/O automaton model. We

do not redefine any concepts of the original model, so all of its properties carry over to the

extended model.

8.1.1 Unconstrained Automata

When we superpose one module on another, we would like the higher level module not to

interfere with the lower level one. In particular, we do not want the higher level module to

place constraints on how the lower level module may modify its own variables. Therefore, we

will define superposition to apply only when the higher level module is "unconstrained" for the

variables of the lower level module. We first define formally what it means for an automaton

to be unconstrained for a set of variables. Let X be a set of variables with domain dom(X).

An unconstrained automaton A for X is an I/O automaton such that there exists a set P of

variables with a set of possible initial values init(P) such that:

" states(A) = dom(P) x dom(X),

" start(A) = init(P) x dom(X), and

" for every step ((p', X'), 7r, (p, x)) in steps(A), for all i E dom(X), ((p', z'), ir, (p, i)) is in

steps(A).

Informally, the extra condition on the transition relation says that automaton A places no

restrictions on the values of the variables in X following any action. Note, however, that the

8.1. SUPERPOSITION EXTENSIONS 153

set of locally controlled actions enabled in a given state of A may depend on the values of X

variables in that state.

Since an unconstrained automaton in an I/O automaton, all the standard I/O automaton

definitions for executions, schedules, behaviors, and composition carry over to unconstrained

automata. One may think of an "ordinary" I/O automaton as an unconstrained automaton for

X = 0.

One way to model a layered multicomponent system is to individually superpose pairs of

automata and then compose. An equally valid method is to create two entire system layers

through composition, and then superpose. In using the latter method, we would like the

composition of an unconstrained automaton for X and an unconstrained automaton for Y,

with X n Y = 0, to be an unconstrained automaton for X U 1'. However, this is not the

case. Even if the components of the higher layer are each appropriately unconstrained, their

composition is not.1 Therefore, we define a relaxation operator U that builds an unconstrained

automaton from an ordinary one. Let A be an I/O automaton whose state is divided into

two sets of variables P and X with domains don(P) and dom(X) respectively. We define the

relaxation of A with respect to X, denoted U(A, X), to be the automaton B as follows:

" sig(B) = sig(A),

* states(B) = states(A),

" start(B) = {(p, i) : i E don(X) A 3x E dom(X),(p,x) E start(A)},

" steps(B) = {((p',x'),ir,(p,i)) : i E don(X) A 3x E dom(X),((p',x'),Tr,(p,x)) E

steps(A)}, and

* part(B) = part(A).

The relaxation operator U simply constructs the new automaton by adding enough start

states and steps to make it unconstrained for X. The following lemma follows immediately

from the definitions.

'For example, suppose Ax is an unconstrained automaton for X and Ay is an unconstrained automaton for
Y. In the composition of Ax and Ay, the values of the variables of X are changed only in steps involving actions
of Ax. Therefore, any action of Ay that is not an action of Ax is constrained to leave the values of the variables
in X unchanged. Thus, the composition of Ax and Ay is not unconstrained for X U Y.

154 CHAPTER 8. SUPERPOSITION

Lemma 8.1: Let A be an I/O automaton whose state is divided into two sets of variables, P

and X. Then U(A, X) is an unconstrained automaton for X.

The following result allows us to prove properties of the schedules of individual uncon-

strained automata with the knowledge that these properties will carry over to all schedules of

the relaxation of the composition.

Lemma 8.2: Let {Xi}iE2, be a set of disjoint sets of variables, and let {Ai}i(= be a collection of

strongly compatible automata, where each Ai is unconstrained for Xi. Let A be the composition

JIiErAi, and let A, be the automaton tl(A,UEI Xi). Then scheds(A) = scheds(A) and

fairscheds(A) = fairscheds(A).

Proof: We know that scheds(A) g scheds(A), since start(A) g start(A,) and steps(A) C

steps(Au) by definition. We show that scheds(A,) C scheds(A) using the following construction.

Let a,, be an execution of A,,. and let a be identical to a,. except that Vi E I, Vn > 0. if s",

is the nth state of a,, and s is the nth state of a, then sIXi = s ,JXi, where s' is the state of

au immediately preceding the first action of Ai following su (if no action of Ai follows su, then

S' is the state immediately after the the last action of Ai in au: if no action of Ai occurs in

au, then s' is the initial state of au). Note that the value of sIXi is identical for all states s

between to successive actions of Ai in a. and is equal to the value of Xi just before the next

step of Ai in au.

Clearly sched(a) = sched(au). To show that a is a schedule of A, we must show that (1)

if so is the first state of a, then so E start(A), and (2) every step (s',7r,s) in a is in steps(A).

For condition (1), since each component Ai is unconstrained for Xi, we know that the initial

value for xi may be any value in dom(Xi). Therefore, so E start(A). For condition (2), we note

that if (s', r, s) is the nth step of a, we know from the construction that if r E acts(Ai), then

s'JAi = s'JAi, where s' is the nth state of au, and that r is enabled in state s. Therefore,

ir is enabled in state s'. And since Ai is unconstrained for Xi, any value is possible for Xi in

the resulting state. Furthermore, we know from the construction that if 7r acts(Ai), then

slAi = s'lAi. Therefore, (s', r, s) is a step of A.

The fairness result follows from the above arguments and the fact that part(A,,) = part(A)

by definition of the relaxation operator. U

8.1. SUPERPOSITION EXTENSIONS 155

8.1.2 Superposition

In this section, we define the conditions under which one module may be superposed on another,

and then define the superposition operator itself.

Requirements for Superposition: In order to provide a sensible semantics for the super-

position operator, we define the superposition of one automaton on another only when the two

automata satisfy certain compatibility conditions, defined as follows. Let X be a set of variables

with domain dom(X). We say that automaton A is superposable on automaton B with respect

to X iff

1. A is unconstrained for X,

2. states(B) = dom(X), and

3. sig(A) and sig(B) are strongly compatible.

Loosely speaking, the first condition ensures that module B may freely modify its own

variables in the superposition. The second condition says that the set of states of the underlying

automaton must match the domain for the set of variables on which A is unconstrained. The

third condition is the usual restriction for composition of modules.

Superposition Operator: We would like superposition to capture the idea that the higher

level automaton is allowed to observe (but not modify) the state of the lower level automaton,

and that the lower level automaton is unaware of the variables of the higher level automaton.

We want the actions of the superposed automaton to include the actions of both the high level

and low level automata, and we wish to allow the possibility of actions that are shared by both

automata. This motivates the following definition.

Let X be a set of variables with domain dom(X), and let A and B be automata such that

A is superposable on B with respect to X. We define the superposition of A on B with respect

to X, denoted C = S(A, B, X), as follows:

* sig(C) = sig(A) x 2 sig(B),

2 Usual signature composition.

156 CHAPTER 8. SUPERPOSITION

* states(C) = states(A),

" start(C) = {(p,x) E start(A) : x E start(B)},

" steps(C) = all steps ((p', x'), ir, (p, x)) such that the following conditions hold:

1. r E sig(C)

2. if 7r E sig(A), then ((p', x'), r, (p, x)) E steps(A)

3. if 7r E sig(B), then (x', 7r, x) E steps(B)

4. if ,r sig(A), then p = p'

5. if r sig(B), then x = x', and

" part(C) = part(A) U part(B).

Informally, the signature of the superposed automaton C is the composition of the signatures

of A and B. The states of C are the same as the states of A, and the set of start states of C

is the set of all start states of A such that the values of X agree with some start state of B.

The most interesting part of the superposition definition is the construction of the set of steps.

It says that any step of C for an action of A must also be a step of A. Similarly, any step of

C for an action of B must be a step of B, when projected on the variables in X. Essentially,

the actions of A and B are enabled just as before, with automaton B placing constraints on

the values of the variables in X. The last two conditions of the steps(C) construction simply

prevent steps involving only L Urn i,,difying tbh privtc variables of A, and steps involving

only A from modifying the variables in X. That is, if a step of C does not involve an action of

A, then the private state variables of A must not be modified by the step. Similarly, if a step

of C does not involve an action of B, then the values of the variables in X are unchanged by

the step.

In a step for an action shared by A and B, the private state of A is modified according to

the transition relation of A, while the state of X is modified according to the transition relation

of B. This should agree with one's intuition about the semantics for such shared actions.

The following lemma states that a superposition of one I/O automaton on another results

in a new I/O automaton. This implies that all the standard definitions and results for I/O au-

tomata, notably for composition and fairness, immediately carry over to superposed automata.

8.1. SUPERPOSITION EXTENSIONS 157

Lemma 8.3: Let X be a set of variables with domain dom(X), and let A and B be automata

such that A is superposable on B with respect to X. Then C = S(A, B, X) is an I/O automaton.

Proof: We must show that inputs of C are always enabled. That is, we must show that for

all states s' E states(C) and for all actions ir E in(C), there exists a state s E states(C) such

that (s, r, s) E steps(C). Let s' = (p', x'). There are three cases for ir E in(C). For each case,

we exhibit an appropriate new state s:

1. 7r E sig(A) and 7r V sig(B). Since A is an unconstrained automaton, we know that

3p E private(A) such that Vi E dom(X), ((p, x'), r, (p,)) E steps(A). Specifically, if we

let i = x', then we are done.

2. ir _ sig(A) and ir E sig(B). Since B is an i/O automaton, we know that 3x E states(B)

such that (x , 7r, x) E steps(B). Therefore, since 7r sig(A), ((p', x'),7r, (p', x)) E steps(C).

3. 7r E sig(A) and 7r E sig(B). Since A is an unconstrained automaton, we know that

3p E private(A) such that Vi E dom(X), ((p',x'),7r,(p,±)) E steps(A). Furthermore,

since B is an I/O automaton, we know that 3x E states(B) such that (x', 7r, x) E steps(B).

Therefore, letting i = x completes the proof.

In each case, 7r is enabled from s'. U

The following two results formalize the notion that properties of the underlying algorithm

are preserved in the superposition.

Lemma 8.4: Let X be a set of variables with domain dom(X). Let A and B be automata such

that A is superposable on B with respect to X, and let C = S(A, B, X). Then execs(C)IB C

execs(B) and fairexecs(C)IB C fairexecs(B).

Proof: Let a be a (fair) execution of C. By definition of superposition, if (s', 7r, a) is a step

of a and ir 0 acts(B) then siX = s'IX. Therefore, alB is a (fair) execution of B. (The fairness

result follows from the fact that part(B) g part(C), so any execution fair to the classes of C

must also be fair to the classes of B.) 0

In general, it is not the case that every execution of the lower level automaton is a projection

of an execution of the superposed automaton. For example, lower level automaton B may have

158 CHAPTER 8. SUPERPOSITION

r as an input action, so its set of executions include executions in which ir occurs multiple

times. If automaton A is defined to have 7r as an output action such that 7r occurs at most

once in every execution of A, then none of the executions of B in which 7r occurs more than

once are projections of executions of the superposition of A on B. However, when no output

actions of the higher level automaton are inputs to the lower level automaton, the converse of

Lemma 8.4 holds, and we have the following result.

Lemma 8.5: Let X be a set of variables with domain dom(X). Let A and B be automata such

that A is superposable on B with respect to X, and let C = S(A,B,X). If in(B)fnout(A) =

then execs(C)IB = execs(B) and fairexecs(C)IB = fairexecs(B).

Proof: From Lemma 8.4, we know that ezecs(C)IB C ezecs(B) and fairexecs(C)IB C

fairexecs(B). Let 3 be a (fair) execution of B. Since in(B) n outA = 0. we know that the

higher level component A has no control over which actions of acts(B) occur in an execution

of C. Furthermore, only the actions of B may change the variables in X in the superposition.

Therefore, since a locally controlled action of B is enabled from state s in C iff it is enabled

from state siX in B, there must exist some (fair) execution -f of C such that 'YIB = 3. Thus,

execs(B) C ezecs(C)IB and fairexecs(B) C fairexecs(C)IB. U

The next result says that when an automaton A is superposed on some other automaton,

then the set of schedules of the resulting automaton, when projected on the signature of A,

is a subset of the schedules of A alone. This is very important because it allows us to prove

safety properties about A alone with the knowledge that these properties will hold when A is

superposed on some other automaton.

Lemma 8.6: Let X be a set of variables with domain dom(X). Let A and B be automata

such that A is superposable on B with respect to X, and let C = S(A, B,X). Then

scheds(C)Isig(A) C scheds(A).

Proof: Let -1 be an execution of C. We construct a from -y by the following steps:

1. Remove from - all actions not in sig(A). This may create sequences of states not sep..uiated

by actions.

2. Replace the sequence of states between each pair of successive actions by the last state in

that sequence.

8.1. SUPERPOSITION EXTENSIONS 159

Clearly, a is an alternating sequence of states of A and actions of A. To show that a E

ezecs(A), we must show that the first state of a is in start(A) and that if a = ((p',x'),7r,(p,x))

is a step in a, then a E steps(A). For both of these, we use the following fact.

Fact: If a sequence of states from -y is replaced in step 2 of the construction by the

single state (p. x), then every state in that sequence has p as the value of the private

state of A.

Proof of Fact: In -, each of these states is separated by an action not in the signature

of A. From the definition of superposition, we know that any step in -1 not involving

an action of A does not change the values of the private variables of A. Since (p. x)

is the last state in the sequence, every state in the sequence must have p as its first

component.

From the above fact, we know that the first state of - and the first state of a agree on

the values of the private variables of A. Since A is unconstrained, any value in dom(X) is an

allowable value for the second component of the start state. Therefore, the first state of a is a

start state of A.

If a = ((p',x'),7r,(p,x)) is a step in y, then we know that 7r occurs from state (p',x') in

a. Furthermore, from the above fact, we know that 7r results in state (p..i) in Y for some

- E dom(X). So, we know that steps(A) contains the step ((p',x'),7r,(p, i)) for some i E

dom(X). Therefore, since A is unconstrained for X, we know that steps(A) contains the step

((p', x'), 7r, (p, .)) for all i E dora(X), and specifically for i = z. This completes the proof. E

Note that not all schedules of A are necessarily possible in the superposition, since certain

states reachable in A alone may not be reachable in the superposition. For example, suppose

a particular action 7r of A is enabled only when a variable x E X has a particular value v, and

suppose that the automaton B on which A is superposed is defined to never set z = v. Since A

alone may set x to any value (by the definition of unconstrained for X), the action 7r may occur

in behaviors of A. However, by the definition of superposition, there is no step of S(A, B, X)

that results in x = v, so 7r is never enabled. This is a perfectly natural and desirable property

of superposition, for it says that the state of the lower layer affects the behavior of the higher

layer.

160 CHAPTER 8. SUPERPOSITION

Another interesting fact is that fairscheds(C)Isig(A) and fairscheds(A) are incomparable.

We know from the above paragraph that fairscheds(A) g fairscheds(C)I sig(A). But it is also the

case that fairscheds(C)jsig(A) g fairscheds(A), as witnessed by the following example. Suppose

that A has only two actions, ir, and Ir 2 . each in its own class of the partition. Furthermore,

suppose that both events are enabled exactly when x = 0. Now, suppose that B has exactly

one action 7r3 , that toggles the value of x between 0 and 1, and is always enabled. In the

superposition of A on B, a fair schedule would be ,r,7"3 ,r 3 ,r l ,7r3 ,7r3,rl,...., in which the

class containing r2 is given a chance to take a step only when x = 1. However, the infinite

schedule 7r,, r, rl, i is not a fair schedule of A alone: Since the schedule consists of infinitely

many r, actions, it must be that irl is enabled from every state of the corresponding execution.

Therefore, z = 0 in all states of that execution. But ir2 is also enabled whenever x = 0, yet the

class containing 7r2 is never given a chance to take a step, so the schedule is not fair.

The reason for the above fact is that the preconditions for the locally controlled actions of A

are allowed to depend upon the values of the variables in X. Keeping this in mind, consider the

following additional condition on unconstrained automata. If A is an unconstrained automaton

for X, then A is said to be completely unconstrained for X iff for for all actions ir E sig(A),

if ((p',x'),ir,(p,x)) E steps(A) then for all ; E dom(X), there exists a state (0, x) E states(A)

such that ((p', i), 7r, (p, x)) E steps(A). In other words, whether or not an action of A is enabled

can depend only upon the values of its private variables. The only way for A to make any use of

the variables of X would be for it to modify its own local variables according to what it observes

in X, causing other actions of A to become enabled or disabled. Modifying the definition of

superposable to require the higher level automaton to be completely unconstrained for X would

allow us to prove that fairscheds(C)Isig(A) C fairscheds(A), but would result in a significant

loss of expressive power. So, rather than require this condition outright, we state the following

lemma, which says that if an automaton happens to be completely unconstrained, then the

containment result holds for its fair schedules. This gives us more flexibility in the use of the

model.

Lemma 8.7: Let X be a set of variables with domain dom(X). Let A and B be automata

such that A is completely unconstrained for X and A is superposable on B with respect to X.

Let C = S(A, B, X). Then fairscheds(C)Isig(A) g fairscheds(A).

8.1. SUPERPOSITION EXTENSIONS 161

Proof: Analogous to that of Lemma 8.6, but noting that the actions of A are enabled

independently of the value of X and applying the definition of fairness. U

The definition of an unconstrained automaton A for X requires that the value of X may be

changed arbitrarily with each step of A. However, a more natural way to descrbe the behaviors

of a module to be superposed on another module might be to allow the values of X to change

between the steps of A as well. For this, we define the notion of an "extended execution" in which

several states may occur between two successive actions. If A is an unconstrained automaton

for X, we define an extended execution of A to be a sequence a of states in states(A) and actions

in acts(A), beginning with a state in start(A), such that:

1. if a state-action-state sequence s'rs appears in a, then (s', 7r, s) is in steps(A),

2. if two states s' and s appear consecutively in a, then they differ only in the vaae of X.

and

3. no two actions appear consecutively in a.

We define fairness for extended executions exactly as for ordinary executions. We let extexecs(A)

and fairextexecs(A) denote the sets of extended executions and fair extended executions of A,

respectively. If a is a sequence of states and actions and I is a set of actions, we define the

notation ajjII to be the sequence that results from deleting from a exactly those actions not in

II. Using extended executions instead of ordinary executions, we get the desired fairness result:

Lemma 8.8: Let X be a set of variables with domain dom(X). Let A and B be automata

such that A is superposable on B with respect to X, and let C = S(A,B,X). Then

ezecs(C)[lsig(A) g eztexecs(A) and fairexecs(C)Ilsig(A) _ fairextezecs(A).

Proof: Let a be an execution of C. From the definition of superposition, we know that

a begins with a state in start(A), and that any step (s', r,s) occurring in a with r E sig(A)

must be a step of A. Also by the definition of superposition, for any step (s', 7r, s) where 7r is

not in sig(A), s' and s must differ only in the value of X. Therefore, allsig(A) is an extended

execution of A by definition. If a is fair, then since a and alsig(A) contain the same sequence

of states, and since part(A) g part(C), we know that allsig(A) is a fair extended execution of

A.

162 CHAPTER 8. SUPERPOSITION

8.1.3 Partial Execution Modules

It is important to have a formal mechanism for specifying the problem to be solved by an

automaton. Schedule modules, as described in Section 2.4, permit us to specifv the allowable

schedules of a module in terms of the actions that occur the boundary with its environment.

However, if an automaton A is to be superposed on top of some underlying automaton B, then

we would like to specify the allowable behaviors of A not only in terms of the actions that occur

at its external interface, but also in terms of the internal state of B. To accomplish this, we

define a new specification mechanism called a "partial execution module."

Let X be a set of variables with domain dom(X), and let II be a set of actions. A partial

execution for H and X is defined to be a sequence of states and actions, beginning with a state.

such that each state is in dom(X), each action is in H, and each action is immediately followed

by a state. Note that a partial execution may contain several states between two consecutive

actions. A partial execution module H consists of

" sig(H), an external action signature,

" vars(H), a set of variables with domain dom(vars(H)), and

" pexecs(H), a set of partial executions for sig(H) and vars(H).

A partial execution module H defines a problem to be solved by an unconstrained automaton for

vars(H) with external signature sig(H). In order to define what it means for an automaton to

"solve" H, we need a way to extract partial executions from extended executions: Let X be a set

of variables with domain dom(X), let H be a set of actions, and let a be an extended execution

of any automaton that is unconstrained for X. We define al(H, X), the partial execution for II

and X in a, to be the same as a, except that each state a is replaced by its projection on X

and each action not in 11 is deleted. If A is an unconstrained automaton for X with external

signature H, we define pexecs(A, X) to be the set {al(II, X) : a E fairextexecs(A)}.

An automaton A is said to solve a partial execution module H iff pexecs(A, vars(H)) C

pexecs(H).

8.1. SUPERPOSITION EXTENSIONS 163

8.1.4 Superposition for Partial Executions

Lynch and Tuttle define composition for both automata and schedule modules. So far, we have

defined the superposition of one automaton on another, but have not yet defined an analogous

operator for superposing a partial execution module on another module. We now complete

the theory by defining the superposition of a set of partial executions on a set of ordinary

executions.

Let X be a set of variables and let 1H and A be sets of actions. Let 0 be a set of partial

executions for H1 and X, and let 4D be a set of alternating sequences of states in of dom(X) and

actions in A. Let ?J be the set of all alternating sequences of states of X and actions of 1I U A.

We now define the superposition of 0 on D with respect to X. Overloading the S notation, we

define

S({,4IX) = {o E Z3 Oli E c9A olA E It}.

I!, other words, for each element a of S(,, 4), X), deleting all actions from a except those in II

results in a partial execution in 0. and projecting a on the actions of A results in an execution

in 4D.

The following result says that the set of fair behaviors of a superposition of A on B with

respect to X is the same as the set of behaviors resulting from the superposition of pezecs(A, X)

on the fair executions of B.

Lemma 8.9: Let X be a set of variables. If automaton A is superposable on automaton B

with respect to X, then fairbehs(S(A, B. X)l(rI, X)) = behs(S(pexecs(A),fairexecs(B), X)).

Proof: If 03 is a fair behavior of S(A, B, X), let a be the corresponding execu-

tion. By Lemma 8.8, allsig(A) is a fair extended execution of A, so al(sig(A),X) E

pexecs(A). And by Lemma 8.4, alB E fairexecs(B), so fairbehs(S(A,B,X)I(fl,X)) C

behs(S(pezecs(A), fairezecs(B), X)).

To show the other direction, let a be an element of ,(pexecs(A),fairexecs(B), X). We know

from the definition of superposition of partial executions, we know that a[im E pezecs(A).

Therefore, there eists a fair extended execution a' of A such that a = a'l(ext(A), X). Also

from the definition of superposition of partial executions, we know that alA E fairezecs(B).

Since the states of a an a' are identical with respect to X, we know that for each -tep (s', 7r, s)

164 CHAPTER 8. SUPERPOSITION

of at.A , there exists in a' a pair of consecutive states s' and such that S'IX = s' and .JX = s.

We construct a" by inserting each action of aiA between the corresponding pair of states in

a'. To complete the proof, we must show that a" is a fair execution of S(A, B. X). We know

that a" begins with an initial sta' e of A. Now, we consider the four possible cases for each step

(s', 7r, s) in a":

1. If 7r E sig(A), then (s',ir,s) E steps(A), since a' is an extended execution of A.

2. If 7r E sig(B), then (s'IX, ir. sIX) E steps(B), because of our construction of &" from a

and the fact that alA is an execution of B.

3. If :r 0 sig(A), then s' and s differ only in the value of X by definition of an extended

execution.

4. If r sig(B), then s'jX = siX, again because ajA is an execution of B.

Therefore, a" is an execution of S(A,B.X). To show that a" is fair, we note that

part(S(A, B,X)) = part(A) U part(B) by the definition of superposition, and we consider the

classes of A and B separately. We know that a' is a fair extended execution of A. Therefore,

since a"1IA = a', a" is fair to the classes of A, Similarly, since ajA is a fair execution of B,

and a"IB = ajA, we know that a is fair to the classes of B. U

8.2 Example: Global Snapshot

In this section, we illustrate the superposition model extensions with the Chandy-Lamport

global snapshot algorithm [13]. We begin by defining the global snapshot problem with a

partial execution module G. Then, we describe the global snapshot algorithm as an automaton

to be superposed on an application program. Finally, we give a complete proof that the global

snapshot algorithm solves partial execution module G.

8.2.1 Problem Specification

We consider systems of processes that communicate by sending messages over a network. The

network guarante,s eventual one-time delivery of each message such that messages sent from

8.2. EXAMPLE: GLOBAL SNAPSHOT 165

a given process to each other process arrive it the order sent (pairwise FIFO). The goal of

a distributed global snapshot protocol is to produce a global state of a system (states of all

processes and the set of messages in transit) during an ongoing computation. The snapshot

algorithm is not allowed to interfere with the computation of the rest of the system. For

example, the snapshot algorithm cannot halt the system. In addition, the snapshot obtained

must be both consistent and recent. By consistent, we mean that the snapshot is a state that

could have occurred in some execution3 of the underlying system. By recent, we mean that

there exists some execution of the underlying system that contains the following states in order

(with possibly other states in between):

1. the initiation state, the state of the system when the snapshot protocol is initiated,

2. the global state of the system reported by the snapshot algorithm,

3. the termination state, the state of the system when the snapshot algorithm terminates.

In other words, the snapshot state is a state that "could" have occurred between the initiation

and termination states of the system.

The global snapshot problem, and protocols for solving it, are neatly specified using the

superposition definitions defined in the previous section. We view the snapshot algorithm as a

layer to be superposed on top of the application layer. We begin by specifying the signature

for each of the underlying application processes and a schedule module for the network. Then,

we present a partial execution module G that formalizes the problem statement given above.

Application Processes

Let I be a finite set of names for the communicating processes in the application program. Let

M be a universal set of messages containing a special marker symbol (#). For each i E I,

we fix a corresponding applicktion process ui. Each process ui is modelled as an automa-

ton having a set of state variable Xi with domain states(u,), and the following signature:

3The states of these executions include not only the states of the application processes, but also the set of
messages in transit in the system (i.e., the state of the network).

166 CHAPTER 8. SUPERPOSITION

Input actions: RCV(m,j,i), m E M,j E I

Output actions: SEND(m,i,j),mEM,jEI

The input actions represent ui receiving a message m from uj, and the output actions

represent ui sending a message m to uj. Associated with ui are two sets, out-chans(i) and

in-chans(i), both subsets of I. One may think of out-chans(i) as identifying those application

processes to whom ui may send messages, the "outgoing channels" of ui. Similarly, in-chans(i)

identifies the application process from whom ui may receive messages, the "incoming channels"

of ui. Let graph CHANS(V, E) be the graph with II vertices uniquely labeled by the elements

of I and E ={(i E Ij E 1) : j E out-chans(i)}. We allow the set out-chans(i), for each i E I,

to be arbitrary, except that the graph CHANS must be strongly connected. For each i E I,

the set in-chans(i) is defined, as one would expect, to be the set of all j E I such that i E

out-chans(j).

A sequence 3 of actions of ui is said to be well-formed for i iff for all m E M, and for all

j,k E 1, if SEND(m, i,j) occurs in 3. then j E out-chans(j) and m A #, and if RCV(m,k,i)

occurs in 3, then k E in-chans(k). (The technical restriction on the symbol # is present because

is a special message in the snapshot algorithm, and therefore must be distinguished from the

ordinary messages of the application processes.)

We require that u1 preserve well-formedness for i, but make no other restrictions on the

allowable behaviors of ui. We make no restrictions on the domain states(ui).

Correspondence Relations

In specifying the network, as well as the global snapshot problem, we use a correspondence

relation technique similar to that of [18]. Let t denote a text string. We define a message

action fort to be any action of the form t(m,i,j), where m E M and i,j E 1. Let 1 be a

sequence of actions, and let x and y be text strings. Let IT, be the set of events4 for message

actions for x in 3, and let II be the set of events for message actions for y in 3. Let C be a

binary relation on the set of events in an execution onto itself, and let us say that two events

4We uses the term event here to refer to a particular occurrence of an action in the sequence.

8.2. EXAMPLE: GLOBAL SNAPSHOT 167

in an execution correspond iff the relation is true for that pair of events. We say that C is a

correspondence relation for x and y in /3 iff the first four of the following conditions hold, and

is a live correspondence relation iff all of the following conditions hold.

1. Corresponding events have identical arguments.

2. Each event 7ry E fly corresponds to exactly one event 7r, E I, and 7r. precedes r. in/3.

3. Each event 7r. E Hl corresponds to at most one event in II.

4. If x(m. i,j) precedes x(m', i,j) in 3. and y(m, i,j) and y(m', i,j) are their corresponding

events, then y(m. i,j) precedes y(m', i,j) in /3.

5. For each event 7r. E ir, there exists a corresponding event in H1y.

An intuitive explanation of these conditions follows their use in specifying the network. The

following lemma states a transitivity property of correspondence relations.

Lemma 8.10: Let /3 be a sequence of actions, and let x, y and z be text strings. If Cx& is a

(live) correspondence relation for x and y in /3, and Cy. is a (live) correspondence relation for

y and z in 3, then there exists a (live) correspondence relation C.. for x and z in/3.

Proof: Let Cz be defined as follows. Two events 7r, and 7r, in /3 correspond iff there exists

an event 7r in /3 such that r. corresponds to ry according to C., and lr, corresponds to 7r.

according to Cyz. The properties of a (live) correspondence relation follow immediately. 0

The Network

Rather than modelling the network as an explicit I/O automaton, we define an action signature

for the network and then define a well-formedness property of sequences of those actions that

characterizes the desired behaviors of the network. The signature of the network is as follows:

Input actions: SEND(m, i,j), m E M, i,j E I

Output actions: RCV(m, i,j), m E M, i,j E "

If /3 is a sequence of actions, then /3 is network admissible iff there exists a live correspondence

relation for SEND and RCV in /3. This means that (1) a SEND and RCV correspond only if

168 CHAPTER 8. SUPERPOSITION

they match on the arguments m, i. and j, (2) each RCV corresponds to exactly one SEND,

and the SEND occurs earlier, (3) for each SEND event, there corresponds at most one RCV

event. (4) messages between pairs of processes are delivered in the order sent, and (5) each

message sent is eventually received. The fifth condition is the liveness property we assume to

be guaranteed by the network.

The Application System

In defining our correctness condition for the global snapshot algorithm, we would like to express

the notion that the application processes should not be able to tell whether they are running in

a system with the snapshot protocol, or in a system without the snapshot protocol. Therefore,

we explicitly define the set of allowable behaviors of the "system without the snapshot protocol"

to form the basis of our correctness condition.

Let U = liE Ui, the composition of all the application processes. We define the set of

fair behaviors of the application system, denoted fairbehs(S, pp) to be the set of behaviors of

all network admissible fair executions of U. We will state the correctness conditions for a

global snapshot protocol in terms of fairbehs(S,,pp). In doing so, it will be helpful to have the

following definitions. Let seqs(M) be the set of all sequences of elements of M, including the

empty sequence s. Let a be element of fairbehs(Spp), and let C be a correspondence relation

for SEND and RCV in a. (We know there is one, by the definition of network admissible.)

If a' is a prefix of a, we define in-transit,,c : (I x I) - seqs(M) as follows. For each pair

i,j E 1, in-transit,ic(i,j) is the sequence of messages m such that SEND(m,j,i) occurs in

a', but the corresponding RCV(m,j, i) does not, ordered according to the SEND events. In

other words, for each i,j pair, we have the sequence of messages sent from uj to ui, but not

yet delivered to ui. We define in-transit analogously for the schedule of a, anO for executions

or partial executions whose schedules, projected on U, are in fairbehs(Sapp).

Partial Execution Module G

In this section, we specify the global snapshot problem by defining a partial execution module

G. Let chans name the set of all possible functions from elements of I to elements of seqs(M),

and let a!l-chans name the set of all possible functions from elements cf I to elements of chans.

8.2. EXAMPLE: GLOBAL SNAPSHOT 169

The signature sig(G) is as follows:

Input actions: STARTi, i E I

SEND(m, i,j), m E A4, i,j E I

MSGRCV(mi,j), m E M,i,j E I

Output actions: MSGSEND(m,i,j), mE ,i,j EI

RCV(m. i,j), m E M. i,j E

DONEi(a.c), i E 1, a E states(ui), c E chans

Let a be a sequence of states(U) and actions of G. If a START action (for any i) occurs in

a and exactly one DONE action occurs in a for each i E 1, then we let a = Ctla 2a 3, where

a 2 begins with the first START action and ends with the last DONE action. Furthermore, we

define snap(a) to be the pair (s E states(U),c Eall-chans) such that Vi E ". if DONEj(a,,c)

occurs in a, then sjui = ai and c(i) = ci. In other words, snap(a) is the collective state of the

system (including messages in transit) reported in the DONEi actions for all i E I.

Since the snapshot algorithm has no control over its input actions, we require that G behave

properly only when its environment, namely the network and the application processes, is well-

behaved. Let a be a sequence of states(U) and actions of G. We say that a is admissible iff

(1) there exists a live correspondence relation Ca, for MSG-SEND and MSGRCV in a, and (2)

Vi E 1,alui E execs(ui). We place constraints on the behavior of G only for admissible partial

executions.

Let a be a sequence of states(U) and actions of G. Then a E pexecs(G) iff the following

condition holds. If a is admissible, then

1. sched(a)IU E fairbehs(S.pp)

2. if a START action occurs in a, then

(a) Vi E 1, exactly one DONE occurs in a, and

(b) 30 = /31,32S33,34, an execution of U, with correspondence relation CO for SEND and

RCV in 0, such that
i. ViE 1,01u = alu,

170 CHAPTER 8. SUPERPOSITION

ii. the last state of a, is the last state of 31, and in-transito,,c, = in-transita,,C,,

iii. snap(a) = (s, in-transit3,1 3,,c), and

iv. the first state of a3 is the first state of 04, and in-transita,0 ,.02 ,c = in-

transit,,,, Co.

Condition (1) captures the idea that the computation of the application processes in the

system with the snapshot algorithm should be a legal computation in the application system

alone. Condition (2) concerns the snapshot itself. It says that if a snapshot is requested, then

(a) snapshot information eventually is reported for each application process ui E ", and (b) the

snapshot produced must be a consistent recent state of the system. Note the similarity of part

(b) with the informal statement of the global snapshot problem given at the beginning of this

section.

In the specification of the global snapshot problem, we used the states of the underlying

algorithm to express the recency condition. This would not have been possible with an ordi-

nary schedule module specification, and points out the need for partial execution modules in

conjunction with superposition.

8.2.2 The Algorithm

In this section, we use the I/O automaton model with superposition extensions to describe the

global snapshot algorithm of Chandy and Lamport [13]. In the original paper by Chandy and

Lamport, the snapshot algorithm is described being "superimposed" on top of the application

program. However, the algorithm is actually presented as a modification to the underlying

application program, and care is taken to ensure that the modification does not disrupt the

application. Chandy and Misra [14] describe the algorithm in UNITY, and Nour [51] recasts

that work using I/O automata. In both of these presentations, however, the distinctions between

the snapshot algorithm and the underlying application become blurred. That is, the UNITY

program resulting from superposing the snapshot algorithm on the application is monolithic; it

does not preserve the essential separation of actions under the control of the snapshot protocol

and the actions under the control of the application. This is partly due to the lack of separation

of inputs and outputs, but is largely due to the absence of a mechanism for partitioning the

actions of a program into separate processes. Using I/O automaton superposition, we are able

8.2. EXAMPLE: GLOBAL SNAPSHOT 171

to achieve a formal separation of the application program from the global snapshot protocol.

The -built-in" partition of locally controlled actions of an I/O automaton allows us to model the

actions of the snapshot protocol and the actions of the application as being under the control

of different processes.

To model the global snapshot algorithm, we define a snapshot automaton pi for each i E I.

In a sense, pi encapsulates the corresponding application automaton ui, acting as a buffer

between the application processes and the network. Because of this struc-re, the SEND and

the RCV actions of the application are no longer shared with the network, but are instead

shared with the snapshot automaton. The snapshot automaton, in turn, interacts with the

network using MSG-SEND and MSGRCV actions to avoid naming conflicts. We postulate

a renamed network, where the SEND actions are renamed 'o be MSG-SEND actions and the

RCV actions are renamed to be MSGRCV actions. In this way, the encapsulation structure is

supported without renaming the actions of the application processes.

Each snapshot automaton pi, i E I has several state components. The components state-

snapped and chan-snapped[j], j E I are boolean variables, initially false, that record whether or

not the state of ui and the states of the various "incoming channels" adjacent to ui have been

recorded for the snapshot. The components in-queue[j] and out-queuej], for each j E I, are

queues of messages, initially empty. These contain messages that are waiting to be delivered to

(or sent from) application process ui. Recall that a message for process ui from process ui is

not delivered directly to process ui from the network. Instead, the message is delivered to the

snapshot automaton pi, which places the message in in-queue[j] for later delivery. Similarly,

when process ui sends a message to process uij, the SEND action is not shared with the network

automaton. Instead, the snapshot automaton pi puts the message in out-queueuj and later sends

out the message. The component snapshot, initially undefined, takes on values in states(ui),

and is used to record the snapshot of the application's state at ui. Similarly, chan-state[j], for

j E 27 is an initially empty queue of messages that is used to record the state of the incoming

channel from process j. Finally, the state component done is a boolean variable indicating

whether or not pi has reported the results of its local snapshot in a DONEi action.

The signature and transition relation are shown in Figure 8.2.2. In the code, if q is a queue,

then head(q) refers to the first item in the queue (i.e., the one that would be dequeued next), or

172 CHAPTER 8. SUPERPOSITION

nil if the queue is empty. The function tail(q) refers to the queue that results from dequeuing

head(q). If q has zero or one elements, then tail(q) = nil. Since the snapshot automaton pi

is designed to be superposed on top of the application process automaton ui, we use the state

component app to refer to the state of the application process automaton ui. One can easily

check that pi is unconstrained (in fact, completely unconstrained) for {app}. (See Lemma 8.11.)

A step (s', ir, s) appears in the transition relation for pi iffthe precondition for ir holds in state s',

and state s is derived from s' according to the assignments in the effect of r. If no precondition

is given, then it is assumed to be true in all states.

The partition part(pi) is defined as follows. For each j E 2, there are two classes: all actions

of the form RCV(m. i,j), m E .4, and all actions of the form MSG..SEND(m. i.j), m E A4.

Finally the action DONEi is in a separate class.

The snapshot algorithm is initiated at pi either by a START, action from the environment

or by receipt of a marker message (#). The environment may generate any number of START

messages for any number of snapshot processes. However, we view the first START message

in an execution as the start of the global snapshot protocol. The first time a START, occurs

or pi receives a marker, pi records the local state of the underlying application automaton ui

(and records the state of the incoming channel on which the marker was received as being

empty), places a marker in the queue for all of its outgoing channels, and begins keeping track

of all messages received on its incoming channels in the chan-state variables. Any later START,

message is ignored. Any later receipt of a marker on a given "channel" j causes pi to set chan-

snapped[j] to true, which prevents pj from adding later messages to chan-statej]. Once the

state of ui and the states of all incoming channels have been snapped, pi may issue a DONE

action, reporting the snapshot information.

We now prove some simple properties of pi. The compositionality properties of I/O au-

tomata will allow us to use these local results in proving properties of larger systems containing

pi.

Lemma 8.11: Automaton pi is completely unconstrained for app.

Proof: By inspection of the code for pi, app never appears in a precondition, and never

appears on the left hand side of an assignment in an effect. U

8.2. EXAMPLE: GLOBAL SNAPSHOT 173

Input actions: START,
MISG-REGEIVE(ni,i), mn E M, j ElI

Output actions: RCV(m, j,), mEG M, i ElI
NISG-SEND(m, i, j), m E M,ji E I
DONEi(a, c), s E sftes(u1). c E chans

" START,
Effect: if s'.state-snapped = false then

s.snapshot = s'.app
s.state-snapped = true
Vk E out-chans(i), soul-queue[k] # o s'.out-queue~k]

" MISG-RCV(m,j. i)
Effect: if m = # then

if s'.staie-snapped = false then
s.snapshot = s'.app
s.state-snapped = true
Vk E out-chans(i), s.out-queue[k] # o s'.out-queue[k]

s.chan-snappedUj] = true
else

s.tnqueueu) = m os'.inqueueuj]
if s'.state-snapped = true A s'.chan-snappedUj] =false then

s. chan-stateU] = m o s'. chan-stateuj]

" SEND(m,ij)
Effect: s.out-queueuj] = m os'.out-queueu]

" RCV (m, j, i)
Precondition: m = head(s'.in-queue[j])
Effect: s.in-queueU] =tail(s'.in-queueUj])

" MSG-SENP(m,i,j)
Precondition: mn = s' .head(out-queueUj])
Effect: s. out-queueUj] = tail(s'. ott-queueUj])

" DONE,(a, c)
Precondition: s'.stole-snapped = true

Vj E s'.in-chans, s'.chan-snappedfj] =true

s'.done = false
a = $'.snapshot
Vj E 1, c(j) = s'.chan-state(j)

Effect: s.done = true

Figure 8-1: Global Snapshot Automaton pi.

174 CHAPTER 8. SUPERPOSITION

Lemma 8.12: Let a be a fair execution of p,. Then there exists a live correspondence relation

for SEND and MSG-SEND in a, and there exists a live correspondence relation for MSG.RCV

and RCV in a.

Proof: By definition, a SEND(m,i,j) action for Pi places m into out-queue[j]. Only a

MSGSEND(m,i,j) action can remove m from that queue, and the only precondition for a

MSGSEND(m, i,j) action is that m is at the head of out-queue[j]. Therefore. since a is a

fair execution, exactly one MSG.SEND(m, i,j) event eventually occurs for each element of out-

queue[j], in the order of the SEND events. This implies that there is a live correspondence

relation for SEND and MSG.SEND in a. Similarly, by definition a MSGRCV(m,j,i) action

places m into in-queue[j]. Since a is a fair execution, exactly one RCV(m,j, i) event eventually

occurs for each element of in-queue[j], in the order of the MSG_.RCV events. Therefore, there

is a live correspondence relation for MSGRCV and RCV in a. U

The following lemma states several properties of executions of pi.

Lemma 8.13: Let a be an execution of pi containing states s' and s, in that order. Then

Vj E 1,

1. If s'.state-snapped = true, then s.state-snapped = true.

2. If s'.chan-snapped(j) = true, then s.chan-snapped(j) = true.

3. If s'.done = true, then s.done = true.

4. If s.chan-snapped(j) = true, then s.state-snapped = true.

5. If s'.state-snapped = true, then s.snapshot = s'.snapshot.

6. If s'.chan-snapped(j) = true, then a.chan-state(j) = s'.chan-state(j).

7. If START, occurs before state s, then s.state-snapped = true.

8. If MSGRCV(#,j, i) occurs before state s, then s.chan-snapped(j) = true.

9. If state-snapped = false, then chan-state(j) = C.

8.2. EXAMPLE: GLOBAL SNAPSHOT 175

Proof: Properties 1-3 are immediate from inspection of the code for pi, since no action

of pi sets those variables to false. Property 4 follows from Property 1 and the definition of

MSGRCV, the only action that can set a chan-snapped variable to true. Property 5 follows

from the definitions of STARTi and MSGRCV, which only modify snapshot if state-snapped

is false. Similarly, Property 6 follows from the fact that a MSGRCV action only modifies

chan-state(j) if chan-snapped(j) is false. Property 7 follows from the definition of START,

and Property 1. Property 8 follows from the definition of MSGRCV and Property 2. Since

chan-sta'e(j) is initially empty and only modified by a MSGRCV action when state-snapped

= true. Property 9 follows from Property 1. 0

In the following lemma, we use the above stable properties and invariants to show exactly

what pi reports in a DONEi action.

Lemma 8.14: Let a be an execution of pi containing a DONEi(a, c) action, and let s be the

first state of a in which state-snapped = true. Then a = s.app, and for all j E Z, c(j) contains

the sequence of messages m appearing in all the MSGRCV(m,j, i) actions between state s and

the first state s' in which chan-snapped(j) = true.

Proof: From the precondition on DONE, we know that state s must exist. The only actions

that can cause state-snapped to become true are the STARTi and MSG..RCV actions. When

either of these actions sets state-snapped = true, they also copy app into snapshot. Therefore,

s.snapshot = s.app. So, from Properties 1 and 5 of Lemma 8.13, we know that this value of

snapshot remains fixed for the remainder of a. Therefore, by the definition of DONE,, a =

s.snapshot = s.app.

For all j E 1, we know from Property 9 of Lemma 8.13 that in all states s' before s

in a, s'.chan.stateU] = c. When the first RCV..MSG(#,j,i) occurs in a, chan-snapped(j) is

set to true, and chan-state(j) becomes fixed by Properties 2 and 6. Then by the definition of

MSG.RCV, the sequence of messages m appearing in all the MSGRCV(m,j, i) actions between

state s and the first state s' in which chan-snapped(j) = true is exactly the sequence of messages

added to chan-state(j) in a, and they are added in the order of occurrence in a. Therefore, by

definition of DONE1 , the lemma holds. U

176 CHAPTER 8. SUPERPOSITION

8.2.3 Proof of Correctness

Throughout the proof, we use subscripts to distinguish the state components of different pro-

cesses. For example. app, refers to the app component of pi.

Let automaton P be the composition of ail pi, i E 1, and let X be the set of variables appi,

i E 1. Let Q = U(P, X). We wish to show that Q solves partial execution module G. First, we

prove a statement about interprocess communication in Q, and then turn directly to the main

result.

Lemma 8.15: Let a be an admissible fair extended execution of Q. Then there exists a live

correspondence relation for SEND and RCV in ca.

Proof: Since a is admissible, we know there is a live correspondence relation between

MSG_END and MSGRCV in a. Therefore. by Lemmas 8.12 and 8.10, we have the desired

result. I

Theorem 8.16: Automaton Q solves partial execution module G.

Proof: The organization of the proof follows the definition of G. Let -Y be an admissible

fair extended execution of Q, and let a = yj(acts(G),X). For condition (1) of G, we wish

to show that sched(a)JU E fairbehs(Spp). From the hypothesis (a admissible), we know that

for all i E 1, alui E fairbehs(ui). Therefore, by Lemma 2.1, we know that a E fairexecs(U).

And from Lemma 8.15, wp know that sched(a) is network admissible. Therefore, sched(a)iU E

fairbehs(Sapp).

For condition (2) of G, suppose that a START action occurs in a. For (2a), we wish to

show that exactly one DONEj occurs in a for each i E 1. For each i E I when the first START,

or MSGRCV(#,j, i), j E 1, action occurs, a marker (#) is placed into every out-queue[j] E

out-chans(i). Therefore, if a STARTi occurs or pi receives a marker, then for all j E out-

chans(i), a MSGSEND(#,i,j) eventually occurs. Since a is admissible, a MSGRCV(#,i,j)

eventually occurs for all j $ i. We know that the graph CHANS is strongly connected. Thus, if

a START, occurs in a, then eventually a marker is received by each pi on each of its incoming

channels. The first time a START, occurs or a marker is received at pi, the state of ui is

recorded. F'irthermore, when a MSGRCV(#,j,i) occurs, pi records the state of incoming

channel j. Therefore, it is eventually the case that for all i,j E 1, state-snapped, = true and

8.2. EXAMPLE: GLOBAL SNAPSHOT 177

chan-snappedj] = true. By Properties 1 and 2 of Lemma 8.13. we know that these are stable

properties. Therefore. since the preconditions on DONE, eventually become true and remain

true until it occurs, a DONE, action must eventually occur in a for each i E I. By Property 3

of Lemma 8.13 at most one DONE, action can occur in a for each i E 1, since that action sets

done, to true. This completes the proof of part (2a).

We prove part (2b) by construction. For all i E I, let s, be the first state in a in which
6tate-snapped, = true. (We have already shown that such a state must exist.) Now. for all

z E 1, mark all actions of aIui after s* as distinguished. Note that all actions in a, are not
distinguished, all actions in 03 are distinguished, and a2 contains a mixture of distinguished

and undistinguished actions. We construct 3 -- 3132s3334 as follows:

1. Let 31 = alIU.

2. Let 32 (33) cuntain the sequence of undistinguished (distinguished) actions of U in 02.

where each action 7r is followed by state s3 E states(U) such that for all i E 1,

(a) if 7r E acts(u,) then s3iu, = soIu,. where .s, is the state following - in a. and

(b) if , acts(u,) then saju, = -s' u, where s' is the previous state in 3.

3. Let 34 = o31U.

Informally. we construct 3 from alt' by "delaying" the actions of a process that has recorded

its local snapshot until all the remaining processes have also recorded theirs. The sequence 31

is the prefix of aIU up to the first START action. The sequence /32 contains all the remaining

actions of oILU for processes that have not yet taken their local snapshots. The sequence /33

contains all the -'delayed" actions, up until the last process reports its snapshot. Finally, /34 is

the suffix of aIU after the global shapshot has been completed.

Clearly, for all i E I, 3lut = alu,. Therefore, by Lemma 2.1, 3 is an execution of U. Next,
we need to show that there exists a live correspondence relation C, for SEND and RCV in 3.

We will show, in fact, that it is the same correspondence relation as in a. We know that the

same actions occur in 13 as in a. Therefore, the only condition we need to show is that for each

SEND action, the corresponding RCV occurs later in /3:

Suppose (for contradiction) that there exists RCV(m, in 3 such that the corresponding

SEND(mi.j) occurs later in 3. The only way this could happen is for the RCV to be an

178 CHAPTER 8. SUPERPOSITION

,:rdistirguished artiou ia a ajid the SEND to be a distinguished action in a, or else they could

not have been reordered by the construction. However, if the SEND is a distinguished action,

then the message from that SEND must be preceded in the outgoing channel by a marker

message from u, to u., so the RCV for the marker occurs at the u, before the RCV for m,

after which state-snapped, = true. This means that any later actions of u2 are distinguished, a

contradiction. Therefore, the live correspondence relation CO exists.

We now consider each of the four properties in condition (2b). Property (i) holds im-

mediately from the construction, since the construction preserves the order of events at each

automaton ui. i E 1. We know that a, is the prefix of a up to the first START action. Since no

process pi sets state-snappedi = true until after the first START action occurs, we know from

the construction that aoiU = 311U. Therefore, the Property (ii) holds. Since 3132 contains

exactly the sequence of undistinguished actions in a. we know that for all i E 2,Slui is the

state of ui in a when state-snapped, first becomes true. Moreover. we know that for all i E 2,

in-transit,3, 23,c (i) maps each j E -" to the set of all messages sent by uj before state-snappedj

= true, but not received by ui before state-snappedi = true. Whenever state-snappedj becomes

true for the first time. pj places a marker in all outgoing channels. Therefore, for all i E 11,

in-transitk3, 2,c,(i) maps each j E j to exactly the sequence of messages m appearing in all

the MSGRCV(m,j, i) of a between the first state in which state-snapped, = true and the last

state before a marker message is received by pi along the channel from p3 . Since receipt of a

marker message from pj results in chan-snappedi(j) = true (Property 8 of Lemma 8.13), we

know from Lemma 8.14 that Property (iii) holds. From the construction 04 = a 3IU. Since

the set of actions in alU is exactly the set of actions in 0 and the correspondence relations for

SEND and RCV are the same, Property (iv) holds. U

This completes the correctness proof for the global snapshot algorithm.

8.3 Supporting Superposition in Spectrum

To conclude the chapter, we propose extensions to the Spectrum Simulation System for sup-

porting superposition.

Our general approach is to permit automata to refer to the states of other automata by

8.3. SUPPORTING SU7PERPOSITION IN SPECTRUM 179

DATA message string
DATA queuemap mapping(automaton.id, sequence(message))

AUTOMATON app
STATE ...

AUTOMATON snapshot
STATE tuple(state-snapped:boolean, chan-snapped:boolean,

in-queue: queuemap, out-queue: queuemap, chan-state queuemap,
temp :queuemap
snapshot: type(app),
child: automaton-id(app))

INPUT Start
EFF ifthen(eq(s.state-snapped,false),{

assign(s .snapshot, state(s .child))

assign(s .state-snapped ,true)
forall-do(k, out(selfo), {

assign(s .temp, map..eval(out-.queue,k))
seq-.addb(s.temp, "SS")
map(out-queue, k, s.temp)

Figure 8-2: Spectrum automaton type definition for an unconstrained automaton.

180 CHAPTER 8. SUPERPOSITION

automaton id using two special operators. The operator type(x). where x is the name of an

automaton type, refers to the data type of states of automata of type x. The operator state(i),

where i is an automaton id, refers to the state of the automaton with id i. One is permitted

to refer to such state information for any lower level automata in the superposition hierarchy,

which we explain shortly. In keeping with the definition of an unconstrained automaton, we have

the loader enforce the requirement that one may not modify the state of another automaton.

In order to provide type checking on references to states of other automata, we convert our

one-pass loader into a two-pass loader. In the first pass, all DATA declarations and automaton

type STATE declarations are processed. Then. in the second pass, the rest of the file is processed

and information gained in the first pass may be used in processing an automaton type definition

to fill in the type information for references to the states of other automata. As a requirement

for this type checking, we must know, when the state of an automaton is referenced, the type

of that automaton. Therefore, we modify the language so that all automaton id's are typed. as

opposed to the current definition in which all automaton id's are considered to have the same

type.

The code fragment in Figure 8-2 illustrates Spectrum syntax for superposition, and corre-

sponds to a piece of the global snapshot protocol in Figure 8.2.2. s We assume that an automaton

type app has been defined as the application automaton type. In addition, we assume that the

system is configured so that each automaton of type snapshot is superposed on exactly one

automaton of type app, and that the child component of the state of each snapshot automaton

is set to the automaton id of the corresponding app automaton in the initially action. In the

incomplete definition for the snapshot automaton, notice that-the state component snapshot

has the same type as the state of automata of type app. That is, the type() operator lets us

say that no matter how the state of app is declared, this component of the snapshot automaton

has the identical data type. Therefore, it is not necessary to modify the snapshot automaton

type definition whenever the state declaration of the underlying application is changed. Notice

that automaton id's are now typed: for example, the state component thild is defined to be

of type automaton-id(app). and not just of type automaton-id. The use of the stateC) oper-

sWe use "SS" for the snapshot marker instead of "#" because only alphanumerics are permitted in Spectrum
strings.

8.4. SUMMARY 181

ator in the second line of the EFF clause is straightforward. It simply refers to the state of the

underlying application automaton. In the loader, the type of this expressioIL is simply deduced

from the automaton type of the argument. If necessary, we may refer to pieces of the state of

the underlying module using the usual record notation, if the data type of the state is a tuple.

For example, one might write state(s. child) .foo.

In a given step, we want the higher level modules to use the "prior" states of the underlying

modules in taking their steps. Therefore, the order of evaluation is important: the execution

loop must ensure that within a given step, the new states of the automata are evaluated top

down in the superposition hierarchy, and that the new set of enabled classes is evaluated only

after all state changes have been made.

The superposition operator, like composition and closeout, is handled by the user interface.

In the loader, each automaton type that refers to the state of an underlying component, is

flagged as an unconstrained automaton. When such an automaton is opened in the types

menu, the user interface presents an auxiliary window that contains the data types of the state

components at the top. Below this information is a work area, like that in the main window

or in auxiliary windows for composed types, in which one may specify the set of underlying

components in the superposition, just as one specifies the set of components of a composition.

So that an automaton may discover its set of underlying components, we add to the language a

configuration data function children (x,t), where x is an automaton id and t is an automaton

type name, that returns the set of automaton id's of those underlying components of the

superposed automaton x that have automaton type t. For example, children(self() ,app)

would have been used in the snapshot automaton described above to discover the id of the

underlying application automaton.

8.4 Summary

In this chapter, we extended the I/O automaton model to permit superposition of program

modules. As an illustration of the extended model, the global snapshot algorithm of Chandy and

Lamport was presented with a complete proof of correctness. Finally, we proposed extensions

to the Spectrum Simulation System to support the extended model.

182 CHAPTER 8. SUPERPOSITION

Chapter 9

Distributed Simulation

In Chapter 6, we mentioned that one way to improve a simulation system designed for ex-

perimenting with algorithms is simply to make the simulator run faster. Optimizations in the

sequential simulator can help in this regard, but one way to dramatically increase the simu-

lation speed is to introduce concurrency in the simulator. Since this thesis is concerned with

distributed algorithms, in this chapter we present an algorithm that could be used to achieve

highly concurrent distributed simulation of I/O automaton systems. We present a new svn-

chronization problem that arises from the particular semantics of the I/O automaton model,

and we present a highly concurrent protocol to solve the problem. The problem statement,

protocol, and correctness proof are all formally stated using the I/O automaton model.

We consider a set of n processes in an asynchronous system whose computation proceeds by

a sequence of multicasts (or partial broadcasts). In each multicast, a process u sends a message

m to an arbitrary subset S of the processes (including u). We say that a protocol solves the

logically synchronous multicast problem if it guarantees the following conditions:

(1) There exists a total order on all multicasts in a computation such that the delivery order

of multicast messages at each process is consistent with that total order.

(2) If process u sends message m, it receives no messages between sending and receiving m.

(3) If process u continually wishes to send a message, then eventually u will send a message.

The first two conditions say that it appears to all processes as if each multicast occurs simulta-

neously at all of its participants (sender plus receivers). Hence, the name logically synchronous

183

184 CHAPTER 9. DISTRIBUTED SIMULATION

multicast. Note that the hypothesis of the third condition does not require that u continually

wish to send the same message, but only some message. This is a technical point that will be

of importance later.

The problem lends itself to a highly concurrent solution, since any number of multicasts

with disjoint S sets should be able to proceed independently. Likewise, one would expect that

the communication costs of an algorithm to solve this problem would be independent of n. We

present a solution that takes advantage of the concurrency inherent in the problem and requires

at most 41SI messages per multicast, provided that a process does not "change its mind" about

the set of participants.

Various approaches to ordering messages in asynchronous systems have been studied. Lam-

port [381 uses logical clocks to produce a total ordering on messages. Birman and Joseph [71

present several types of fault-tolerant protocols, where failures are assumed to be detectable by

timeouts. Their ABCAST (atomic broadcast) protocol guarantees that broadcast messages are

delivered at all destinations in the same relative order, or not at all. Their CBCAST (causal

broadcast) protocol provides a similar, but slightly weaker, ordering guarantee to achieve better

performance. The CBCAST guarantees that if a process broadcasts a message m based on some

other message m' it had received earlier, then m will be delivered after m' at all destinations

they share. Broadcast protocols may be used to achieve process synchronization in distributed

systems. For example, Schneider presents a synchronization technique that assumes a process

may reliably broadcast a message to all other running processes such that messages originating

at a given process are received by other processes in the order sent [57]. Joseph and Birman

provide an extensive discussion of reliable broadcast protocols in [33].

Like ours, the protocols of both [38] and [7] assign a global ordering to messages. However,

these protocols do not solve the logically synchronous multicast problem because they allow

messages to "cross" each other. That is, in their protocols a process u may send a message m

and at some time later receive a message ordered before m. Our problem requires that when

a process u sends a message m, it must have "up to date" information, meaning that it has

already received all messages destined for u that are ordered before m. (See Condition (2)

above.)

Motivated by CSP [31] and ADA [1], multiway handshaking protocols have been studied

185

extensively. (For examples, see [5], [6], and [12].) These protocols must enforce a very strict

ordering on system events, and therefore achieve less concurrency (than ours and the others

mentioned above). This is necessary because the models of CSP and ADA permit processes

to block inputs. Since a decision about whether to accept or refuse an input may depend (in

general) on all earlier events, each process can allow the scheduling of only one event (input or

output) to proceed at a time. That is, process pi cannot permit process P2 to complete an event

e until p, knows that no event e' to be ordered before e will cause e to be refused by pl. In

general, p, cannot permit P2 to complete e until all events at p, ordered before e have already

occurred. Our problem admits more concurrency, since processes may schedule multiple input

events at a time. That is. a process p can permit many multicasts destined for p to proceed

concurrently, since D cannot refuse any of them, regardless of the orderings. 1

One interesting feature of our problem is that it lies between the two general approaches

described above. As we have described, it permits concurrent scheduling of events, yet imposes

a strong, useful structure on the message delivery order.

Other related work includes papers by Awerbuch [4] and Misra [49], which study different

problems in the area of simulating synchronous systems on asynchronous ones. In both cases,

however, the computational models being simulated are very different from ours. Awerbuch's

goal is to take algorithms written for systems in which processes proceed in lock step. and

simulate them on systems in which processes proceed asynchronously. An algorithm is presented

for generating "pulse" messages to synchronize the computation. In contrast, the purpose of

logically synchronous multicast is to provide the illusion of synchronous communication among

dynamically changing subsets of processes, as opposed to synchronized steps at all processors.

Misra [49] studies the problem of distributed discrete event simulation. The essential difference

between Misra's work and logically synchronous multicast is that Misra fixes the communication

pattern. This gives the problem additional structure, since each process expects messages only

from a (small) fixed subset of the other processes. In the present work, we assume that a

process may potentially receive a multicast from any other process in the system. In spite of

this difference, some of Misra's techniques, particularly those for breaking deadlock, can be

'These comments apply only to peeaimistic protocols, in which no rollback is allowed. If rollback is permitted,
an optimistic strategy for CSP-style synchronization could be achieved with more concurrency, but at the expense
of the overhead necessary for rollback.

186 CHAPTER 9. DISTRIBUTED SIMULATION

applied to our problem. This is discussed in Section 9.4.3.

The remainder of the chapter is organized as follows. In Section 9.1, we present the architec-

ture of the logically synchronous multicast problem and a statement of correctness in terms of

the model. In Section 9.2, we formally present the algorithm using the I/O automaton model.

In Sections 9.3 and 9.4, we give a complete correctness proof and analyze the message and time

complexities. We conclude the chapter by describing how the logically synchronous multicast

protocol could be used to achieve distributed simulation of I/O automaton systems.

9.1 The Problem

In this section. we describe the architecture of the logically synchronous multicast problem and

then present a schedule module to define correctness for a multicast protocol.

9.1.1 The Architecture

Let I = {1 .. , n}. Let S denote a universal set of text strings (containing the empty string

c), and let M denote a universal set of messages. Let ui, i E I, denote the n user processes

engaged in the computation, and let pi, i E I, denote rt additional processes. Together, the pi's

are to solve the multicast problem, where each pi is said to "work for" ui. Each of the ui's and

pi's is modelled as an automaton.

Each user ui directly communicates by shared actions with the process pi only. (One may

think of ui and pi as running on the same processor.) The pi's communicate with each other

asynchronously via a network, also modelled as an automaton, that guarantees eventual one-

time delivery of each message sent. Furthermore, we assume that all messages sent between

each pair of processes are delivered in FIFO order.

The boundary between ui and pi is defined by several actions. To summarize the relationship

between ui and pi at each point in an execution, we say that pi is in a certain region, according

to which of these actions has occurred most recently. We will formalize this later. Figure 9-1

illustrates the actions shared by ui and pi, and by pi and the network. Figure 9-2 illustrates

the possible region changes for pi, and the actions that cause them.

Initially, p, is in its "passive" region (P). We say that p, enters its "trying" region (T)

9.1. THE PROBLEM 187

r muticasr-cvit multicas:-sendi
tyior or donei

readyi backout

sed rv sni rcvi send, frcv,

Figure 9-1: System Architecture. Arguments of actions are omnitted.

multiast-rcvi

Figure 9-2: Region Changes for pi.

188 CHAPTER 9. DISTRIBUTED SIMULATION

when user u, issues a tryi(S C 1)2 action, indicating that ui would like to send a multicast

message to processes named in the set S. When it is ready to perform a multicast on behalf

of ui, process pi issues a readyi action and is said to enter its "ready" region (R). The readyi

action conscitue . pernission for ui to actually send the ma'ticast. That is, after receiving the

readyi action as input, user ui may issue a multicast-send(m E S) action, where the argument

indicates the desired text of the multicast message. Upon receiving the multicast-sendj action,

pi is said to enter its "multicast" region (M), where it completes the multicast and returns to

region P by issuing a donei action. Region M is present to ensure that each multicast for ui is

completed before the next multicast is requested by u1 .

In addition to these actions. there are multicast-rcvi(m E S) actions, which are outputs of

pi and inputs to ui. The purpose of these actions, which may occur while pi is in P or T, is to

forward multicast messages to ui that were sent to pi by some process p, on behalf of user u,.

The argument m is the text of the multicast message. To correspond with this additional type

of action, we have a "waiting" region (W), which is entered whenever pi issues a multicast-rvi

action while in T. 3 In W, pi waits to see if ui has "changed its mind" about its own multicast

after hearing the information contained in the multicast-rcvi action. Either ui still wishes to

perform some multicast and issues a tryi(S') action, or ui decides not to do a multicast after

all and issues a backouti action.

It might seem that one could eliminate region W and the backouti actions by having

multicast-rcv% actions take pi to region P. However, this would make it difficult to express

the liveness notion that ui eventually must be allowed to perform a multicast, provided that it

continually wants to do so. Region W is used to signify that ui has a choice of continuing to try

or "giving up." As a separate modification of this architecture, one might consider elimination

of the readyi and multicast-send, actions in favor of including the desired text of the multicast

as a a second argument to the tryi actions. However, as we will see, the readyi and multicast-

send actions serve as useful "commit" points in stating both the safety and liveness conditions

of the problem. They also provide a convenient way to separate the successful multicasts from

the unsuccessful tryi attempts in reasoning about algorithm executions.

2That is, try,.(S), where S C 1.3 A multicast-rcv, action from region P does not cause a region change.

9.1. THE PROBLEM 189

9.1.2 Correctness

Since the only actions under the control of the protocol are the outputs of the pi's, we only wish

to require that the protocol behaves correctly when its environment, namely the composition of

the ui's and the network, is well-behaved. To this end, we define schedule modules that specify

the allowable behaviors of each ui and the network. Based on these, we define a schedule module

for the multicast protocol. We begin with the schedule modules for the u,'s.

Schedule Module U,: We define the signature of Ui as follows:

in(U,) = {multicast-rcvi(m E S). readyi, donej}

out(U,) = {try,(S C 1), multicast-send,(n E S), backout,}

Before defining the set of schedules of Uj, we define a "region sequence" to capture the series of

region changes in a schedule, and then state a well-fornzedness condition which makes use of this

definition. Let the alphabet E = {P, T, R, N1, W, X}. Let a be an arbitrary sequence of actions.

We define the region of i after a, denoted r(i, a), to be an element of E defined recursively as

follows. If aLU, is empty (E), then r(i,a) = P. If a = a'Tr, then, ignoring arguments to action

names,

r(i, a') if ir 4 acts(Uj),

P if (ir = donei A r(i, a') = M) V (r = multicast-rcv, A r(i, a') = P),

T if r =try, A r(i,a') E {P,W},

r(i, a) = R if nr = ready, A r(i, a') = T,

M if (7r =multicast-sendi A r(i, a') = R) V (ir = backouti A r(i, a') = W),

W if r* =multicast-rcvi A r(i,a') = T,

X otherwise.

Given an arbitrary action sequence a and an index i E 1, we define the region sequence

for i in a, denoted region-sequence(i, a), to be the concatenation of r(i, a') for each prefix of a

in order, starting with r(i, c) and ending with r(i, a). Note the close orrespondence between

Figure 9-2 and the definition of region-sequence.

Let a be an arbitrary sequence of actions. We say that a is user w'o1l-formed for i iff

1. for all tryi(S) actions in a, i E S, and

190 CHAPTER 9. DISTPTBUTED SIMULATION

2. region-sequence(i,a) does not contain the symbol X.

We can now define the set of schedules foi Ui. Let a be a sequence of actions in sig(U).

Then a E scheds(U,) iff

1. Ci preserves user well-formedness for i in a, and

2. region-sequence(i. a) does not end in W or R.

The first property is used to help define the safety conditions for the logically synchronous

multicast problem, since a malticast protocol must perform correctly only if its environment is

well behaved. The second property, u:ed in defining the liveness conditions, says that a user

process cannot "stop" in regions W or R. Tnis is used to express the notion that a multicast

protocol must guarantee progress only if user- trving to send multicasts eventually respond to

multicast-rcv and -eady actions.

We define schedule module U to be the composition HEIU:',.

Schedule Module N: We now define a schedule module specifying the network. The signa-

ture is as follows:

in(N) = {send(m E A4,i,j E I)}

out(N) = {rcv(m E M,i,j E I)}

To define the allowable schedules of the network, we use a correspondence relation similar to

that of Fekete and Lynch [17]. A correspor dence relation between the send and rev events in a

sequence captures the correspondence between the send and receipt ,f a message. Consider the

following properties that may hold for a particular correspondence relation for a given sequence

a:

(S1) Vil, i2,jl,j 2 E Y, m1 ,m 2 E M, if event 7r, = send(ml,il,jl) corresponds to event ir2 =

rcv(m2 , i2 ,j 2), then ml = M 2 , il = i2, Jl = J2, and 7r, precedes r 2 in a.

(S2) Vi,j E 1, Vm E M, each rcv(m, i,j) corresponds to exactly one send(m,i,j).

(S3) Vi,j E 1,Vm E Al, each send(m, i, j) corresponds to at most one rcv(m,i,j).

9.1. THE PROBLEM 191

(S4) Vi,j E 1, Vm, m' E M, if event rcv(m, i,j) occurs in a before event -cv(m',i,j), then

their corresponding events send(m, i,j) and send(m', ij) occur in the same order.

(L) Vi,j E 1,Vm E .", each send(m, ij) event has a corresponding rcv(m, i,j) event.

The first four properties (S1-S4) are safety properties. They say that a message is delivered

only after it is sent, that no spurious messages are delivered, that a message is delivered at most

once (for each time it is sent), and that messages between a pair of processes are delivered in

the order sent. Property (L) is a liveness property; it says that each message sent is eventually

delivered.

If a is a sequence of actions of N, we say that a is network well-formed iff there exists

a correspondence relation for a that satisfies properties S1-S4. Moreover. a E scheds(N) iff

the correspondence relation also satisfies property (L). Property (L) will be used only in the

liveness proof.

Schedule Module M: The correctness conditions for the logically synchronous rnulticast

problem can now be stated formally in terms of the actions at the boundaries of the user

processes. We do this with a schedule module M that defines the multicast problem. We define

the signature of M as follows:

in(M) = out(U) U out(N)

out(M) = in(U) U in(N)

In defining the schedules of M, we use a correspondence relation technique (similar to the

one used to define schedule module N) to capture the correspondence between each multicast-

send action and the resulting multicast-rcv actions. Let a be a sequence of actions of sig(M),

and let correspondence relation C relate the multicast-send and multicast-rcv actions of a. We

say that C is a proper correspondence relation for a iff it satisfies the following properties:

1. Vij E I,Vm, m' E 3, if event r, = multicast-sendi(m) corresponds to event r2 =

multicast-rcvj(m'), and tryi(S) is the last tryi action in a before rl, then m = m' and

j E S.

2. Vi,j E I, Vm E S, each multicast-rcv,(m) corresponds to exactly one multicast-send,(m).

192 CHAPTER 9. DISTRIBUTED SIMULATION

3. Vi,j E l"Vtn E S, each multicast-send(m) corresponds to at most one multicast-rcvj(m).

Informally, these properties say that (1) a multicast-rcvj(m) must contain the same text argu-

ment as its corresponding send, and that j must name one of the destination processes, (2) a

multicast-rcv action corresponds to exactly one multicast-send, and (3) a given multicast-send

action corresponds to at most one multicast-rcv for each possible destination process uj.

Let a be a sequence of actions of sig(M), let C be a proper correspondence relation for ,,

and let -< be a total order on all multicast-send actions in a. We say that -< is a proper total

order for C and a iff the following property holds: Vi, j, k E ", m, m' E -, if multicast-send,(m)

and multicast-sendj(m') occur in a with corresponding receives multicast-rcvk(m) and multicast-

rcvk(m'), and if -< orders multicast-sendj(m) before multicast-send,(Tm'), then multicast-rcvk(m)

occurs in a before multicast-rcvk(m'). Informally, this says the order of multicast deliveries at

each user process must be consistent with the total order -<.

Let a be a stquence of actions of sig(M). Then a E scheds(M) iff there exists a correspon-

dence relation C and total order -< such that the following conditions hold.

1. Vi E I. ff preserves user well-formedness for i in a.

2. If a is user well-formed for every i E . and a is network well-formed, then

(a) C is a proper correspondence relation for a,

(b) -< is a proper total order for C and a, and

(c) Vm E S, if r = multicast-send-(m) occurs in a, then no multicast-rcvi occurs between

ir and the multicast-rcvi(m) corresponding to r.

3. If aIN E scheds(N) and Vi E 1, aIUi E scheds(Ui), then the following hold:

(a) Vi E 1, if a tryi occurs in a, then either a backoutj or a readyi occurs later in a.

(b) Vi E 1, S 9 1, if a multicast-send(m) occurs in a and tryi(S) is the last preceding

try action in et, then a corresponding multicast-rcvi(m) occurs later in a for each

j E S.

Items (1) and (2) are the required safety properties. Part (2c) is needed to ensure that

user processes have "up to date" information when sending a multicast message. Item (3) is

9.2. THE ALGORITHf 193

the required liveness property. Part (3a) says that if a user process does not back out of its

attempt to perform a multicast, then eventually it will receive permission to send the multicast.

Part (3b) says that if a multicast is sent by a user process, then eventually all destination user

processes will receive it. Note that the hypothesis of item (3) is needed to ensure that liveness

properties hold for the users and the network. That is, we require that a solution to the

multicast problem guarantee progress only if the users and the network satisfy their liveness

requirements. namely that every user responds to multicast-rcv and ready actions and that every

message is eventually delivered. A multicast protocol is correct iff it solves M.

9.2 The Algorithm

This section presents the multicast protocol. We present the algorithm by giving an explicit

I/O automaton for each pi, i E I. We show in Section 9.3 that the composition of the pi's

solves the schedule module M and is therefore a correct protocol.

The algorithm is based on logical time. We define a logical time to be an (integer, process-id)

pair drawn from T = ({1, 2 } U oc) x 1, and we let logical times be ordered lexicographically.

Essentially, each process pi maintains a logical time clock, and each multicast is assigned a

unique logical time.4 The process pi delivers all multicast messages destined for ui in logical

time order.

The state of each automaton pi has several components. The variable region E {P,T,W,R,B}

is initially set to P and holds the current region of pi, as described in Section 9.1.1. The variables

try-set, need-set, requested, and requests are subsets of 1, initially empty. Th. try-set names

the processes to whom ui would like to send a multicast, and the need-set contains the union

of all values of try-set since the last multicast by pi (or the beginning of the execution). The

two sets requested and requests name the processes to whom pi has sent requests for "promises"

and the processes from whom pi has received such requests. We will explain promises shortly.

The variable text E S is initially undefined, and is used to hold the text of the latest multicast

by uj. Two arrays of logical times indexed by . are kept: promises-to and promises-from. The

entries of these arrays, initially (oo, n), are used to keep track of the times of promises granted

4We never use co in the time of a multicast message; it is used only as a place holder.

194 CHAPTER 9. DISTRIBUTED SIMULATION

and received, respectively. Two additional logical time variables, clock and mctime, are initially

(0. i). The clock contains the current logical time of u,'s computation, and mctime contains

the time of the latest multicast by ui. Finally, the variable pending is an initially empty set of

(text E S, time E T) pairs. This set contains all multicast messages received by pi but not yet

delivered to ui.

We let min(promises-to) denote the smallest time among the entries in the promises-to

array. Similarly, we let max(promises-from) denote the largest time less than (nc, n) Rmong th,

entries in the promises-from array; if all entries in that array are (oc, n), then max(promises-

from) = (0, i). Finally, we let min(pending) and max(pending) denote the pairs in the pending

set having the least and greatest logical times, respectively; if pending is empty, then both

values are (E, (0, i)).

The transition relation for pi is shown in Figure 9-3. "P" and "E" denote precondition and

effect, respectively. An action is enabled in exactly those states s' for which the precondition

is satisfied. If an action has no precondition, it is enabled in all states. When an action occurs,

pi's new state s is determined according to the statements in the effects clause. States s and s'

agree on components not assigned values in the effects clause. Automaton pi has the following

signature.

Input actions: tryi(S C 1) Output actions: multicast-rcvi(m E S)

backouti readyi

multicast-send(m E S) donei

rcv(m E M,j E I,i) send(m E M,i,j E 1)

The equivalence classes of part(pi) are as follows. The actions multicast-rcvi, readyi, and donei

are together in one class. And for each j E 1, there exist four classes containing the sets of

actions send(promise(t E T),ij), send(req-promise,ij), send(adv-promise(t E T),ij), and

send(multicast(m E 3, t E T),i,j). This choice of a partition simplifies reasoning about what

actions must eventually occur in an execution. However, the necessary liveness properties

could also be guaranteed with only two classes: one for send(promise(t E T),i, j) actions, using

a queue to ensure fairness to each j, and one class for all remaining output actions.

To describe the logically synchronous multicast protocol, we chronicle the events that take

9.2. THE ALGORITHM 195

Output Actions:
Input Actions:

* send(req- promise. i, j E 27)
" tryi(S) P: s'.region E {T,W}

E: s.try-set = S j E s'.need-set \ s'.re quested
s.need-set = s'. need-set US E: s.re quested = s'.re quested U {j}
s.regzon = T o send(promise(t E T),i,ji E 1)

" rcv(req-promise,j E 1,i) P: i E s'.requests
E: s.requests = s'.requests U {j} t > max(s'. try- time.max(s'. pending).tirne)

" rcv(promise(t E T),j E 1, i) E: s.re quests = s'.requests\{}

E: s. prom ises-fromUj3 = t s.promises-touW = t

* multicast-send,(m) * ready,

E: s.text = mn P: s'.region = T
8 regin = Ms'.pending = 0
s~regionmin (s'. promises- to) ? s'.try-time

" rcv(rnulticast(rn E S, t E T),j E 1,i) Vj E s'.try-set,
E: .s.promises-tofj] = (o., n) s'. prom ises-from~j] < (oo, n)

if m 96 then E: s.mcthme = s'.try~-time
spending = s'.pending U {(mn,t)} s.region = R

* backout, * send(multicast(m E S, t E T), i E 1)
E: s.try-set =0 P: s'.region = M

.s.regiofl M v s'.promises-fromUj] < (toc.n)

" rcv(adv-promise(t E T)J E 1, 0) t = s'.mclime

E: s.promises-touL t if (j E s'.try-set) then
M = S'.texi

else m = c
E: s.requested = s'.re quested \ {j}

s.promises-fromUj] = (ocn).

* multicast-rcvi(m)
P: s'. region E f{P,T}

(mn,t) = min(s'.pending)
t < min(s'. promises- to)

E: s.pending = s'. pending \ (mn,t)}
s. clock = t
if s'. region = T then s. region =W

* done1
P: s'. region = M

s'.requesied=0
E: sneed-set =0

s.region = P

* send(adv-proniise(t E T),i,ji E 1)
P: 8'.region E {T,W}

Vk E s'.irj-sef,
s' promises-from~k] < (oo, n)

8' .promises-fromnj] < s'.try-time
t = s'.fry-thme

E: s.promises-fromtjl = s'.trj-tme

Figure 9-3: Transition relation for pi

196 CHAPTER 9. DISTRIBUTED SIMULATION

place between ui's multicast request and the completion of the multicast. To more fully under-

stand this description, it is recommended that the reader follow along in the code for pi given

in Figure 9-3. Unless otherwise noted, the word "process" refers to one of the processes pi,

i E 1. Also, we use the words "time" and "logical time" interchangeably.

To initiate the request to perform a multicast, ui issues a tryi(S) action, where S is the set

of indices of user processes that are to receive the multicast.5 The tryi(S) action causes pi to

remember S as its try-set, insert the elements of S into its need-set, and enter its trying region

(T). In region T, pi begins to send "req-promise" messages to each member of need-set, b, erPn-

track, in the component requested, of those requests already made in order to avoid sending

duplicate requests. Each process pj receiving a "req-promise" message eventually responds by

sending back a "promise" message with an associated logical time t. 6 The promise means that pj

will not perform or deliver any multicasts with a time greater than t until pi either relinquishes

the promise (by sending a "multicast" message to p,' or advances the promise (by sending an

"adv-promise" message with the later time). One may think of a promise as a roadblock that

pj erects in u1's computation at some future logical time. The process pj doesn't allow uj's

computation to advance past that time until the roadblock is removed or advanced by pi.

The time associated with a promise from p3 is chosen by pj to be greater than the greatest

logical time associated with any message in its pending set, and also to be greater than pj's

try-time: the pseudo-variable try-time for pj is defined to be the smallest logical time having

process-id j such that

try-time > max(&lock, mctime, max(promises-from)).

One may think of try-time as a lower bound on thr logi; -d time that pj could assign to its next

multicast.

Each process keeps track of both the times for promises it has granted to other processes

(in the promises-to array) and the times for promises it has received from other processes (in

the promises-from array). After receiving a promise from each process pj in its try-set, pi can

issue a readyi action and assign mctime to the current value of try-time, provided that (1) pi's

'Recall from the definition of U. that i E S.
'Note that p, sends "req-promise" messages to itself in order to simplify the presentation of the algorithm.

A simple optimization would be to eliminate these messages, as well as the "promise" messages that p, sends to
itself in response.

9.2. THE ALGORITHM 197

pending set is empty, and (2) all promises p, has granted with times lower than try-time have

either been relinquished or advanced past try-time. The second condition is present to ensure

that ui receives no multicast messages with logical times less than t after pi decides to send its

multicast. Note that once mctime is assigned in a ready action, it remains fixed for all further

processing of ui's current multicast. Specifically, any further change in the try-time leaves the

mctime unaffected.

When a readyi action occurs. ui can no longer back out from sending a multicast. The

readyi action leaves Pi in the ready region (R), where it waits for ui to respond with a multicast-

sendi(m) action. When this action occurs, pi enters the multicast region (M) and records the

desired text of the multicast in its text component. In region M, pi sends "multicast" messages

to all processes pj from whom it holds promises. These messages have two purposes. First,

they communicate the text and mctime of the multicast. Second, they relinquish the promises.

If pi holds a promise from pj, but j is not in try-set (we will see shortly how this may happen),

the text argument of the multicast message is set to c, indicating that the promise should be

relinquished but that no multicast should be delivered to uj. After pi has relinquished all the

promises it requested, it may issue a donei action and return to its passive region.

When a process pj receives a multicast(m, t) message from pi, it notes that its promise to pi

has been relinquished, and, if m 6 c, inserts the pair (m, t) into its pending set. The message

m is eventually delivered to uj in a multicast-rcvj(m) action when t is the lowest time among

the times in p,'s pending set and pj has no outstanding promises with times less than t. These

conditions are necessary to ensure that any later (m', t') pair received by pj will have t' > t so

that multicast messages are delivered in logical time order.

So far in this discussion, we have ignored the fact that many multicasts may be proceeding

concurrently. Two complications arise as a result of this concurrency. The first relates to the

delivery of a multicast message to a user while that user is itself waiting to send a multicast,

and the second results from the need to break deadlock situations in the granting of promises.

We now consider each of these complications in turn.

If pi is in region T and issues a multicast-rcvi(m) action, it enters the waiting region (W)

where it waits for a response from ui. Process ui, on the basis of the new message m, may

decide either to continue trying to perform a multicast or to back out. In case of the former,

198 CHAPTER 9. DISTRIBUTED SIMULATION

ui issues a tryi(S') action, where S' is not necessarily the same as S. (This explains how pi

may hold promises from processes not named in its try-set.) This tryi action is treated just

as before. If ui decides to back out, it instead issues a backouti action, causing p,'s try-set to

become empty and causing pi to enter region M, where it proceeds to relinquish its promises

as usual.

In the course of concurrent scheduling of multicasts, deadlock situations may arise in the

granting of promises. Consider a situation in which pi and p. are trying to send multicasts such

that each is in the other's try-set. Suppose that all promises received by p, (including the one

received from p) are less than some promise received by p3 . Then p,'s try-time is less than that

of pj. If p, has granted pj a promise less than pi's own try-time, then neither can perform a

multicast before the other because each must wait for the other to relinquish its promises. Such

deadlock situations are avoided by promise advancement as follows. Suppose that pi has received

promises from all processes in its try-set, but has determined that it is not yet ready to perform

a multicas* to relinquish those promises. In order not to block unnecessarily the computation

of each process pj from which pi has received a promise, pi may send pj an "adv-promise"

message, informing it of pi's current try-time. Upon receiving an "adv-promise" message from

Pi, Pj notes that its promise to pi has been advanced. This may permit pj to deliver additional

multicast messages from its pending set and/or proceed with its own multicast. In the liveness

proof, we will show that these "adv-promise" messages are sufficient to guarantee progress.

In studying the algorithm, one will notice a great deal of nondeterminism in the ordering

of events. For example, we have not specified the order in which promises are requested from

different processes. As a result of this nondeterminism, the correctness proof of the algorithm

is more general, covering many possible implementations of the algorithm.

9.3 Proof of Correctness

Let module P be the composition of all automata Pi, i E I. In this section, we show that module

P solves schedule module M, which implies that the logically synchronous multicast protocol

is correct. The organization of the correctness proof closely follows the definition of schedule

module M. Clearly, sig(P) = sig(M). To show that P solves M, we need to show that all fair

behaviors of P satisfy the safety conditions (1 and 2) and the liveness condition (3). We prove

9.3. PROOF OF CORRECTNESS 199

these in order. Throughout the proof. we use subscripts to distinguish the state components

of the different automata in P. For example, region is the region variable in the local state of

automaton p,.

9.3.1 Safety Proof

As we have said, the safety proof consists of showing that all executions of P satisfy conditions

(1) and (2) of schedule module .l. We start by proving condition (1), that P preserves user

well-formedness for all i E T. Following this, we state some properties of well-formed executions

that will be used in the proof of condition (2). as well as in the liveness proof. A key part of

proving condition (2) is showing the existence of a proper correspondence relation C on the

multicast-send and multicast-rcv events in any execution a of P, and also a proper total order

on the multicast-send events in a. To accomplish this, we exhibit particular constructions that

produce a correspondence relation C,, and an ordering -<,, for any execution a of P. We then

show that -<, is indeed a total order and finally that condition (2) is satisfied. We prove the

three parts of condition (2) with the help of several intermediate lemmas.

Turning now to the proof of condition (1), we begin by proving the following relationship

between the statp of pi and the definition nf r(i. a).

Lemma 9.1: Let a be an execution of P such that a is user well-formed for all i E 1, and let

s be the final state of a. Then for all i E 1, s.regioni = r(i, a).

Proof: By induction on the length of a.

Base case: If a is of length 1 (just an initial state), then the schedule of alUi is the empty

sequence. Therefore, r(i, a) = P for all i E I by definition. In every initial state, regioni = P

for all i E 11, so the lemma holds.

Induction: Let a = a'irs, where the lemma holds for a' ending in state s'. For all i, if

ir sig(Ui), then s.region, = s'.regioni. This satisfies the lemma, since r(i,a) = r(i,a') by

definition if 7r 1' sig(Ui).

If 7r E sig(Ui), then there are six cases: If 7r is a tryi action, then s.regionj = T by the

effects clause of tryi actions. Since a is user well-formed for i, r(i,a) 0 X. Therefore, for

tryi to be the final action of a, it must be that r(i,a') E {P,W}. So, by definition r(i,a) =

T, which is s.regioni. The cases backout and multicast-sendi are argued similarly. If 7r is a

200 CHAPTER 9. DISTRIBUTED SIMULATION

ready, action, let s' be the state immediately before the action occurs. By the precondition of

ready,, we know that s'.region, = T. So by the induction hypothesis. we know that r(i.a') = T.

Therefore. r(i.o) = R by definition. By the effects clause of ready,, s.regioni = R. so s.region,

= r(i,a). The cases mnulticast-rcvi and done, are argued similarly. U

Using the above lemma, we now prove that module P satisfies condition (1) of schedule

module -l.

Theorem 9.2: Module P preserves user well-formedness for i. for all i E I.

Proof: Consider execution a = a'7rs of P. where a' is user well-formed for all i E I and

ends in state s'. Since try, is not an output action of P, we need not consider Part 1 of the

user well-formedness definition. Similarly. for Part 2 we need only consider cases where ir is an

output of P. Since a' is user well-formed for all i E 1, we know that region-sequence(i. a') does

not contain X. Therefore, for each output action ir of P. we simply need to show that r(i.a) i

X. We rely on the fact, from Lemma 9.1, that s'.region, r(i.a'). There are three cases for 7r

an output of P.

1. r = readyi: This is only enabled if s'.region, = T. so r, i. a') = T. Therefore. by definition.

r(i.a) = R.

2. rr = done,: This is only enabled if s'.region, = M, so r(i. a') = M. Therefore, by definition,

r(i,a) = P.

3. r =multicast-rcv,: This is only enabled if s'.region, E {P,T}. If s .region, = P, then r(i, a')

= P, and by definition r(i,a) = P. If s'.regioni = T, then r(i,a') = T, and by definition

r(i, a) = W.

In all cases, r(i, a) 5 X.

We have just shown that module P preserves user well-formedness for all i E 1. Furthermore,

since no rcv action is an output of P, it is not possible for P to violate network well-formedness.

Therefore, in the remaining proofs we can restrict our attention to well-formed executions only.

This motivates the following convenient definition. Let a be an execution of P. We say that

a is admissible iff a is user well-formed for every i E -" and a is network well-formed. The

9.3. PROOF OF CORRECTNESS 201

following lemma states some properties of admissible executions that will be used throughout

the proof.

Lemma 9.3: Let a be an admissible execution of P. For any i E 1, let a' be a subexecution of

P between two successive done, events, (or between the beginning of a and the first done, event).

Then Vj E 1, if a' contains an event having any of the following forms, then it contains exactly

one event of each form such that they occur in the following order: send(req.promise,i,j).

rct(req-promise,i j), send(promise(t)j, i), rcv(promise(t),j, i), and send(multicast(m, t"),i, j).

where m E S, t. t" E T. Furthermore, any events of the form send(adv-promise(t'),i,j), t' E T.

occurring in o' must appear between the last two of the above events.

Proof: The proof is by induction, assuming that the conditions hold for i in the prefix of a

up to the beginning of a'.

First we show that no two send(req-promise.i,j) events can occur in a'. The action r, =

send(req-promise.i,j) is only enabled when region = T and j . requested,. When the action

occurs. it results in j E requested,. Elements may be deleted from the set requested, only while

region, = M. Therefore, another action send(req-promise,ij) cannot occur after 7r1 until p,

passes through some state in which region, = M and then reaches a state in which region, =

T. By Lemma 9.1 and the definition of user well-formedness, this cannot happen without an

intervening done,.

Next, we show that if 7r, = send(req-promise,i,j) occurs in a, then the next done, event

after 7r, must be preceded by r5 = send(multicast(m,t"),i,j). The action r, has as an effect

that j E requested,, and donei has'as a precondition that requested, is empty. Therefore, since

7r5 is the only action that can remove j from requested,, it must occur between 7r1 and donei.

Now we show that each event in the sequence must occur in order for the next to oc-

cur. By the induction hypothesis, all send(req-promise,ij) actions that occur before a' have

their corresponding receives occur before a'. Therefore, by network well-formedness, 7r2 =

rcv(req-promise,i,j) cannot occur before irl, and only one 72 action occurs. Action 7'3 =

send(promise(t),j, i) is only enabled when i E requestsj, and the event results in i's removal

from that set. Since 72 is the only action that can cause i E requestsj, it must precede ir3.

Again, by network well-formedness and the induction hypothesis, we know that 7r3 must pre-

cede I4 = rcv(promise(t),j, i). The action r 5 = send(multicast(m,t"),i,j) has as a precondition

202 CHAPTER 9. DISTRIBUTED SIMULATION

that promises-frorni[j] < (oc,n). Since r 5 has as an effect that promises-from[j] = (xn), and

since T 4 is the only action that can cause promises-fornD] < (oo, n), we know by the induction

hypothesis that promises-frorrn4[j] = (oc. n) at the beginning of a'. Therefore. 7r4 must precede

'5.

Since send(adv-promise(t'),i,j) has as a precondition that promises-frorn4[j] < (oc,n), we

know that it cannot occur before ir4 or after ir 5 . M

In the remainder of the proof, we often use the above lemma to show the existence or

nonexistence of particular events in a portion of an execution.

Conditions (2) and (3) of schedule module Al refer to the existence of a correspondence

relation and a total order. In completing the proof, it is helpful to fix particular constructions

for these as follows. Let a be an execution of P. For all i E 1, if 7r is a multicast-send,

action occurring in a and s is the state immediately preceding ir, then we define time(7r.a)

to be s.mctimei. Similarly, if ir is a multicast-rvi action occurring in a and s is the state

immediately following ir, then we define time(r,a) to be s.clock,. We fix the correspondence

relation Co, as follows: For all i,j E I and for all m E S, events ir, = multicast-sencd(m) and ir2

= multicast.rcvj(m) correspond in a iff time(rl, a) = time(w2, a). We fix -<,, to be the ordering

as follows: For all irl, rr2 multicast-send actions in a, r1 *-c, 72 iff time(r-,a) < time(7r2 ,a).

Before proceeding with the three parts of condition (2), we must first show that -<, is

indeed a total order on the multicast-send events. Recall that the construction of -<, is based

upon assigning logical times to each multicast-send, event according to the value of mctime,

in the preceding state. In the next lemma, we show that the state component mctime, is

nondecreasing.

Lemma 9.4: Let a be an admissible execution of P. Then for all i E 1, if state s' precedes

state s in a, then s'.mctime, < j.mctimej.

Proof. The actions readyi are the only actions that modify mctime. These actions set

s.mctime, to the value of s'.try-timei, which is no less than s'.mctimei by definition. U

With this lemma, we can now show that each multicast is assigned a unique logical time by the

protocol.

9.3. PROOF OF CORRECTNESS 203

Lemma 9.5: Let a be an admissible execution of P. Let r = multicast-sen4(m) and r' =

multicast-sendj(m') be tvo events in a. Then time(r,a) ? time(ri',a).

Proof: There are two cases, depending on whether or not 7r and 7r' are outputs of different

user processes. If i # j, then we know trivially that time(ir,a) time(ri',a) because they

differ in the process-id. (The state component mctimei is assigned only to values of try-timej,

whose process-id component is i by definition.)

If i = j, then assume, without loss of generality, that 7r' precedes ir in a. From the definition

of user well-formedness, we know that at least one readyi action occurs between 7r' and ir. Let

s' be the state from which the last such readyi action occurs, and let s be the resulting state.

We know from Lemma 9.4 that q'.mctimei is no less than the value of mctimei in the state

after r'. Therefore, if we can show that that sl.mctimei < s.mctimej, then we will have proven

that time(7 ', a) < time(r, a). By the precondition of readh, we know that in state s', pi must

hold a promise from itself for some logical time t. By Lemma 9.3 and user well-formedness for

i, we know that pi's promise to itself is sent (and received) betweer, "'e last preceding donei

action and state s'. Also by user well-formedness, we know that no reaa,. ,ction occurs between

this donei action and state s', so the value of mctime is constant over that execution interval.

Whenever pi sends a promise, the promise is assigned a time strictly greater than pi's own

try-time, which is, by definition, at least as large as its own mctime. Therefore, t > s'.mctime.

Since pi holds a promise for time t in state s', we know that s'.try-timei > t. Therefore, since the

readyi action assigns mctime to the value of try-timei, we know that s.mctime > s'.mctime.

This immediately implies the desired result that the construction of -< produces a total

order on the multicast-send events:

Corollary 9.6: Let a be an admissible execution of P. Then -<,, is a total order on the

multicast-send events in a.

Proof: Immediate from Lemma 9.5 and the definition of -.. U

Having shown that -<, is a total order, we can turn to the main task of proving condition

(2) of schedule module M. We begin with condition (2a).

204 CHAPTER 9. DISTRIBUTED SIMULATION

Theorem 9.7: Let a be an admissible execution of P. Then C, is a proper correspondence

relation for a.

Proof." Let r = multicast-senda(m) be an event in a, and let tryi(S) be the last preceding

tryi action. By Lemma 9.5. we know that r is assigned a unique logical time t by the protocol.

By the definition of pi and specifically the preconditions of the send(multicast(m, t), i, j) action,

we know that at most one send(multicast(m 6 ct),ij) action occurs in a for each j E S

(and that none occurs for j ' S). By network well-formedness, we know that at most one

rcv(multicast(m,t),i,j) occurs in a for each of these sends. So (m, t) is added to pendingj at

most once in a, for each j E S (and never for j S). Therefore, by the definition of multicast-

rct', at most one multicast.rcvj(m) action corresponds to ir for each j E S, and no such actions

correspond to 7r for j 0 S. This proves that C,, satisfies properties 1 and 3 of the definition of

a proper correspondence relation.

We now show property 2. By the construction of C,, each each multicast-rcv has an as-

sociated logical time and corresponds only to those multicast-send actions assigned this time.

By Lemma 9.5, each multicast-send has a unique logical time, so each multicast-rcv can cor-

respond to at most one multicast-send. It remains to be shown that each multicast-rcv has

at least one corresponding multicast-send. Let s' be the state from which a multicast-rcvj(m)

action occurs and let s be the resulting state. Then by the definition of that action, it must

be that (m, t) E s'.pendingj and s.clock, = t. Therefore, a rcv(multicast(m,t),i,j) must have

occurred prior to s'. By network well-formedness, this event must have been preceded by

a send(multicast(m,t),ij), which could only have been enabled as a result of a multicast-

send,(m) action with an assigned logical time of t. This is the desired corresponding action.

The next part of the proof is to show that -<, is a proper total order for C. and a. In order

to accomplish this, we first prove a lemma that states some important invariants on the state

of P. The fifth invariant, which states that the minimum time in the pending set of a process

pi is always larger than the clock of that process, is a key piece of the safety proof. Informally,

it tells us that no multicast message arrives "too late". This is used to prove a second lemma,

that the clock component of a process is nondecreasing. This will enable us to show the desired

property of "ck.

9.3. PROOF OF CORRECTNESS 205

Lemma 9.8: Let a be an admissible execution of P. Then for all i,j E 1, the following

properties hold for all states s in a.

1. i E s.requestsj * s.promises-toj[i] = (oc,n)

2. s.promises-to [i] < s.promisesfrormi[j]

3. s.clock < s.promises-toj[i]

4. (s.region E {R,M} A j E s.try-setj n s.requested) =. s.promises-fromi[j] < s.mctimei

5. s.pendingj 0 =:€. s.clockj < min(s.pendingj).time

Proof- Each property is proved by a separate induction on the length of a. 7

Property (1): If a is an initial state, then for all i,j E 1, i . s.requestsj, so the

statement holds vacuously. The only action which can falsify s.promises.toj[i] = (c. n) is

send(promise(t),i,j), but this action removes i from s.requests. The only action which can add

i to requests is a rcv(req-promise,i,j). So, for the induction step, let a = a'rs, where ir =

rcv(req-promisei,j) and Property (1) holds for a'. Suppose (for contradiction) that s.promises-

toj[i] < (oo, n). This can only be true if there exists some 7r', either a send(promise(t),j, i) or

a rev(adv-promise(t),ij), in a' such that no rcv(multicast(m,t'),i,j) occurs between r' and

ir. However, by Lemma 9.3, every send(promise(t),j, i) or send(adv-promise(t),i,j) must be

followed by a send(multicast(m,t'),i,j) before the next send(req-promise,i,j) occurs. So by

network well-formedness, rcv(multicast(m,t'),i,j) must occur between 7r' and 7r, giving us a

contradiction.

Property (2): The base case, a only a start state, holds since promises-froim] = promises-

toj[i] = (oo,n) for all i,j E 1. Let a = a's'rs be an execution of P, where the property holds

in state s'. Now, consider those four actions ir that can potentially increase promises-toj[i] or

decrease promises-f rorj]:

1. If 7r = send(promise(t),j, i), then by Property (1) and the preconditions on ir, s'.promises-

toj3 i] = (oo, n). Therefore, promises.toj[ij is not increased by 7r.

7This is in contrast to proofs in which the inductive hypothesis includes all of the invariants.

206 CHA PTER 9. DISTRIB UTED SIMULATION

2. If ir = rcv(promise(t),j, i), then s.promises-jromj = t. By network well- formed ness, r'

= send(proinise(t) ,j, i) must occur earlier in a', leaving prom ises-toj(i] = t. The only

possible events that could occur between ir' and ir to make q.promises-toj[i) $4 t are

rcv(adv-promise(t'),i,j) or rcv(multicast(m,t'),i,j). By Lemma 9.3, we know that 7r'

must occur before ir such that no send(adv-promise(t')ij) or send(multicast(m,t'),i,j)

occurs between ir' and 7r. By the same lemma, we know that a 7r" = rcv(req-promise,i,j)

occurs before 7r' such that no send(adv-promise(t')ij) or send(multicast(m,t')ij) oc-

curs between 7r" and r'. Hence, by network well-formedness, no rev (adv- promise(t'),i, j)

or rcv(multicast(m,t'),i,j) occurs between 7r' and ir.

3. If r = Tcv(adv-promise(t'),i,j), then s.promises-toj[i] = t'. By Lemma 9.3 and net-

work well- formed ness, the corresponding send(adv-promise(t'),ij) must follow a 7r' =

.send(promise(t)j, i) such that no rcv(multicast(m,t"...),ij) occurs between them. By the

preconditions of send(adv-promise(t')i,j), t' > t, and that action results in promises-

fromWl = t'. Furthermore, any other send(adv-promise(t"),ij) occurring in a' after

.send(adv-promise(t'),i,j) must have t" > t'. Therefore, the property holds.

4. If 7r = rcv(mul ti cast(m, t),i, j), then s.promises-toj[i] = (oo,n). By network well-

formedness, 7r must be preceded by 7r' = send(multicast(m,t),ij), resulting in

promises-frinjl = (oo, n). The only action that can decrease prom ises-jronm4[U1 is a

rcv(promise(t'),j, i). But by Lemma 9.3, any rcv(promise(t')j, i) occurring between

7r'I and 7r must be preceded in that interval by a send(req-promnise,ij) and a rcv(req-

promise,ij). But this violates network well-formedness (S4), so no Tcv(promise(t'),j, i)

occurs between ir' and 7r. Therefore s.promises-JWvrdj = (oo, n).

Property (3): The base case, a a start state, holds since clock, = (O0j) and promises-toi[iI

(oc, n) for all i E 1. Now, consider those actions that can potentially increase clock, or decrease

promises- toi [i]. These are multicast-rcvj, send(promise(t),j, i), and rcv(adv-promise(t),i,j). By

definition, the action multicast-rcvj sets clock to a value t, such that Vi EXI, promises-toi[iI > t.

The action send(promise(t),j, i) sets prom ises-toi[iI = t and is enabled only if t > try-time,

which is at least clock, by definition. Finally, the action rcv(adv-promise(t),i,j) sets promises-

tojliI t . To show that t > chick,, we note that send(adv-promise(i),ij) is enabled at p,

9.3. PROOF OF CORRECTNESS 207

only if promises-froi[j] < t. Therefore, by Property (2), t > promises-toj[i] when send(adv.

promise(t),i,j) occurs. And therefore, t > promises-toj [i] when rcv(adv-promise(t),i,j) occurs,

since Lemma 9.3 and network well-formedness tell us that neither a rcv(multicast(m,t'),i,j)

nor a send(promise(t'),j,i) action can occur between send(adv-promise(t),i,j) and rcv(adv-

promise(t),i,j).

Property (4): The base case, a a start state, holds since regioni = P. Let a = a'irs, where

the property holds after a'. There are two cases.

We first consider the case in which pi enters region R, and subsequently enters region M.

In this case, r = readyi, so the property holds by the preconditions and effects of readyi. In

that action, try-time and mctime are made equal, and we note that mctime remains unchanged

u,,til after pi exits region M. We also observe that by user well-formedness for i, no tryi actions

can occur from regions R or M, so try-set, is fixed in R and M. By Lemma 9.3, no new

promises from members of try-set are received by pi while in R or M, since those promises

have already been received (by precondition of readyi). Therefore, to show that the property

holds after all extensions of a in which pi remains in R or M, we need only show that for all

j E try-set, if promises-fromj"] is increased, then j is removed from requested until the next

donei. Since send(adv-promise(t),i,j) actions are not enabled from M, we need only consider

send(multicast(m,t),ij). However, this action removes j from requested. Since send(req-

promise,ij) is not enabled in M, j cannot be replaced in requested before the next done,.

For the second case, pi does not enter M from region R. In this case, 7r must be backouti,

by user well-formedness for i. Therefore, by the effects clause of that action, try-seti =, so

the property holds vacuously until the next donei.

Property (5): Clearly, the property holds in the initial state. Let a = a's'rs be an execution

of P, where the property holds in state s'. The only action that can change clock, is a multicast-

rcvj, which removes the element from pendingj having the lowest time, and sets clockj to

that time. By Lemma 9.5, no two multicast-send actions are assigned the same logical time.

So by Lemma 9.3, at most one send(multicast(m,t),ij) occurs for a given time t. And by

network well-formedness, at most one rctvmulticast(m,t), i,j) occurs. Therefore, no two items

in pending, have the same logical time. So by the induction hypothesis, the property holds.

The action 7r = rcv(multicast(m $ c,t),ij), for some i E I, is the only action

208 CHAPTER 9. DISTRIBUTED SIMULATION

that can add elements to pendingj. Let s" be the state from which the corresponding

send(multicast(m.t),i,j) occurs. Since m . c implies that j E s".try-set1 , we know from Prop-

erty (4) that s".prornises-fron[j] _ t = s".mctme. Therefore, by Property (2), s".promises-

to[i] < t. By Lemma 9.3 and network well-formedness, we know that no send(promise(t'),j, i)

or rcv(adv-promise(t'),i,j) action can occur between s" and s' to could cause prom ises-toj[i]

to increase past t. Therefore s'.promises-toj[i] < t. So, by Property (3), s'.clockj < t. When 7r

occurs, (m, t) is added to pendingj, so Property (5) holds in state s. a

We now show that the clock state component is nondecreasing.

Lemma 9.9: Let a be an admissible execution of P. Then for all i E 1, if state s' precedes

state s in a, then s'.clock, < s.clock.

Proof: Consider the actions multicast-rcvq, which are the only actions in which clock; can

be modified. Whenever a multicast-rcvi action is enabled, pendingi is nonempty. By definition,

a multicast-rcvi action results in clock1 being set to the minimum logical time in pending. By

Property (5) of Lemma 9.8, cloc; is less than the minimum logical time in pending, provided

pending is nonempty. Therefore, whenever clock, is modified, its value is increased.

We can now prove property (2b) of schedule module M.

Theorem 9.10: Let a be an admissible execution of P. Then -<0, is a proper total order for

C,, and a.

Proof." We need to show that Vij, k E I and Vm, m' E S, if 7r = multicast-send,(m) and

7r = multicast-send,(m') occur in a with corresponding receives fr = multicast-rcvk(m) and V

= multicast-rcvk(m'), and if -.a orders 7r' before 7r, then fr' occurs before *.

From Lemma 9.5, we know that ?r and r' have associated unique logical times. Let these

be t and t', respectively. Since -<, orders 7r' before 7r, we know that that t > t'. Furthermore,

by the definition of C0, , we know that clockk = t in the state immediately after * and that

clock = t' in the state immediately after fr. Lemma 9.9 tells us that clockk is nondecreasing.

Therefore, *' must occur before *. M

Finally, we prove property (2c) to complete the safety proof.

9.3. PROOF OF CORRECTNESS 209

Theorem 9.11: Let a be an admissible execution of P with correspondence relation C,,. Then

Vj E .1 and Vm,m' E S, if ir = multicast-sendc(m) occurs in a, then no multicast-rcrv,(m')

occurs between ir and the corresponding f" = multicast-rcvi(m).

Proof: Consider the state s from which 7r occurs, let a' be the prefix of a ending in state s,

and let t = s.mctime = time(ir,a'). We know, from user well-formedness for i, that r(i,a') =

R. Consider the last action readyi occurring in a', and let s' be the resulting state. (We know

such an action must occur, since this is the only action that can result in region R.) We know,

again by user well-formedness for i, that regioni = R at all states between s' and s.

Suppose (for contradiction) that a multicast-rcvi(m') occurs between 7r and *. From the

definition of readyi, we know that s'.pendingi = 0. Therefore, the only way for the multicast-

rcvi(m') to occur between s' and fr is for a rcv(multicast(m' # E,t"),j,i) with t" < t to occur

first in that interval. By the preconditions of readyi, s'.promises-toi[j] > s'.try-time = t,

for all j E 1. Furthermore, any later send(promise(t'),i,j) must have t' > try-timei, which

is always greater than mctimei by definition. From Lemma 9.4, we know that mctimei is

nondecreasing, so mctime > t in all states after s'. Therefore, by Properties (2) and (4) of

Lemma 9.8, no send(multicast(m' 4 , t"),j, i) with t" < t can occur after s'. (We ignore

send(multicast(c,t"),j,i) actions here because a rcv(multicast(c,t),j,i) action does not cause

an element to be inserted into the pending set. So the only way for a rcv(multicast(m', t"),j, i)

with t" < t to occur between s' and * is for its corresponding send to occur before 8'. If this is

the case, then by Properties (2) and (4) of Lemma 9.8, s'.promises-toi[j] < t". But this violates

the precondition for the readyi action that occurs from state s'. U

9.3.2 Liveness Proof

The liveness proof consists of showing that executions of P satisfy condition (3) of schedule

module M. We prove the two parts of condition (3) in order. Since the protocol is required

to make progress only if the user processes and the network satisfy their liveness properties,

we will restrict our attention to only those executions in which the environment is live. This

motivates the following definition. Let a be a fair execution of P. We say that a is well-behaved

iffaIU E scheds(U,) for all i E 11 and aIN E scheds(N). Note that every well-behaved execution

is an admissible execution, by the definitions of Ui and N, and the fact that P preserves user

210 CHAPTER 9. DISTRIBUTED SIMULATION

well-formedness for all i E I.

Before proving condition (3a), we prove four intermediate lemmas. The following lemma

states that if a promise is requested. then eventually it is granted.

Lemma 9.12: Let a be a well-behaved execution of P. If event ir = send(req-promise,i,j)

occurs in a then a later rcv(promise(t),j, i) occurs in a for some t E T.

Proof. By the definition of scheds(N), a ir' = rcv(req-promise,i,j) occurs in a after ir. By

the transition relation for pi, i E requests, in the state after 7r'. Only a send(promise(t),j, i)

action can cause i .requestsj. Therefore, a send(prornise(t),j, i) action is enabled in all states

after 7r' until one occurs. Since a is a fair execution and send(promise(t),j, i) actions are in

their own class of the partition, such an action eventually occurs. The definition of scheds(N)

tells us that a corresponding rcv(promise(t),j, i) occurs later in a. N

The following simple lemma states that if a tryi action occurs, then eventually either need-

seti becomes fixed, or else a later readyi or backout. action occurs.

Lemma 9.13: Let a be a well-behaved execution of P, and let a' be a suffix of a beginning

with a tryi action, for i E I. If no backoutj or readyi action occurs in o' then there exists a

state in a' after which need-seti is fixed.

Proof: If no backoutj or readyi action occurs in a', then from the definitions of pi and user

well-formedness we know that no element is deleted from set need-setk in a'. Therefore, since

need-se4 can contain at most n elements, we know that there exists a state in a' after which

need-set1 is not changed. U

The next lemma states that a process can eventually accumulate promises from all processes

named in its need-set. This fact will be useful in proving Lemma 9.15.

Lemma 9.14: Let a be a well-behaved execution of P, and let a' be a suffix of a beginning

with a tryi action. If neither a backouti nor a readyj action occurs in a', then there must

exist a point in a' after which the following condition holds for all states s: Vj E s.net,-setk,

s.promises-fron (j] < (oo, n).

Proof. If no backouti or readyi action occurs in a' then by user well-tormedness for i,

regioni E {T,W} in all states of a'. From Lemma 9.13, there exists a state s' in a' after which

9.3. PROOF OF CORRECTNESS 211

need-seti is fixed. Let a" be the suffix of a' beginning with state s'. Then for each state s"

in a" and for each j E s'.need-set, there are two possibilities: either (1) j s'.requested., and

send(req-promise,i,j) is enabled or (2) j E s'.requested and send(req-promise,i,j) occurs before

s' (and after the last preceding donei, if one occurs). In case (1), we know that a send(req-

promise,ij) must eventually occur since a is a fair execution and such actions form their own

class of the partition. So, in either case, Lemma 9.12 tells us that a rcv(promise(t),j, i) action

must occur in a (after the last donei event, if one occurs). So eventually, promises-fron4[j]

< (oo, n) for all j E need-set. No action can occur at pi in region T or W to cause an entry in

the promises-fromN array to become (oc, n). Thus, we have the desired result. E

The final intermediate lemma states that if a process is attempting to perform a multicast.,

tbpn eventually its try-time will stop increasing or the process will perform a multicast.

Lemma 9.15: Let a be a well-behaved execution of P, and let a' be a suffix of a beginning

with a tryi action. If neither a backouti nor a readyi action occurs in a', then there exist a

logical time t E T and a state s in a' such that try-timej = t in all states after s.

Proof: If no backou4t or readyi action occurs in a', then from Lemmas 9.13 and 9.14 we

know that there exists a state s in a' after which need-setj is fixed and pi holds promises from

all processes named in need-se4. Let t = s.try-timei. In order to show that try-time cannot

grow past t in a', we need to show that no new promises arrive at pi, that pi does not advance

any promises past t, and that clock; and mctimei do not increase past t. Clearly, since need-

seti is fixed and pi holds promises from each process named in need-set, no new promises are

requested and no new promises arrive. And by definition, pi never advances a promise beyond

its current try-time. Since pi holds a promise from itself (for a time < t), we know by Property

(3) of Lemma 9.8 that clock cannot grow past t. Finally, since mctimei is only modified by a

readyi action, we know that this is fixed as well. U

The next two theorems correspond to Conditions (3a) and (3b) of schedule module M. In

the first, we assume that there exists a set of blocked processes, and derive a contradiction by

showing that the process with the lowest try-time must eventually make progress. The promise

advancement messages are crucial to this result, because it allows the process with the lowest

212 CHAPTER 9. DISTRIBUTED SIMULATION

try-time to discover this fact. From the previous result, we know that only a finite number of

these promise advancement messages are sufficient to ensure that progress is made.

Theorem 9.16: Let a be a well-behaved execution of P. If a tryi occurs in a, then either a

backou4t or a readyi occurs later in a.

Proof: Suppose (for contradiction) that there exists a set 1' _ 2 such that Vj E ,, a tryj

occurs in a and no later backoutj or readyj occurs in a. From Lemmas 9.14 and 9.15, we know

that there exists a suffix a' of a such that for all j E 3',

1. try-timej is fixed in a', and

2. for all states of a', pj holds a promise from every process named in try-setj g need-set,.

Let i E ,7 be the index of the process with the smallest try-time in a', and let t be this try-time.

To derive a contradiction, we wish to show that a readyi action occurs in a'.

Given the preconditions on readyi, there are only two ways in which the readyi action

could not be enabled: Either (1) promises-toij] < try-time for some j E 2, or (2) pending

is not empty. We consider these in order. By the preconditions on granting a promise, any

new promises granted by pi in a' have logical times greater than t, so we need only consider

promises granted before a'. Each process k E 7 \ J makes progress (i.e., has a backoutk or

ready action), and therefore reaches region M, where it eventually relinquishes every promise

held. So, any promise that pi has granted to any process pk E I- \ 3 for a time less than t must

eventually be relinquished. We have already said that the remaining processes pj E 3' hold

promises from all processes named in their try-sets. Therefore, since a is a fair execution, a

send(adv-promise(t'),j, i) occurs with t' being the logical time at which try-timej is fixed. By

the definition of N, a corresponding rcv(adv-promise(t'),j, i) occurs later in a. Since pi has the

smallest try-time among processes named in J, we know that t' > t in all cases. Therefore, all

promises that pi has granted to other processes for times less than t are eventually relinquished

or advanced past t. So, for all j E 1, promises-toi[j] > try-timei. Therefore, by Property (5)

of Lemma 9.8, nothing prevents multicast-rcvq actions from occurring to empty pending, since

try-time > clock,. Thus, since a is a fair execution, readyi eventually becomes enabled and

must eventually occur. 5

9.4. COMPLEXITY ANALYSIS 213

Finally, we show condition (3b), that a multicast message is eventually delivered to all the

destination processes.

Theorem 9.17: Let a be a well-behaved execution of P. If a multicast-senC(m) occurs in a

and tryi(S) is the last preceding tryi action in a, then a multicast-rcvj(m) occurs later in a for

each j E S.

Proof: If multicast-send,(m) occurs in a, we know that a readyi must precede it. by user

well-formedness for i. By the preconditions of readyi, for all j E try-st4i = S, promises-frorN [j]<

(oc, n). Therefore, the actions send(multicast(m, t),i, j) remain enabled until they occur. And

by definition of N, the corresponding rcv(multicast(m.t),i.j) actions must eventually occur.

Once a rcv(multicast(m,t),i,j) occurs, the only way for the multicast-rcvj(m) to be pre-

vented is for promises-toj[k] to be less than t. for some k E 1. Note that any new promises

granted by p) must be greater than t until multicast-rcvj(m) occurs, since t < max(pending).

Therefore, by Theorem 9.16 and the result of the preceding paragraph, all promises granted by

pj for times less than t must eventually be relinquished. At that point, prornises-to,[k] > t,

Vk E 1, so eventually multicast-rcvi(m) occurs.

Theorem 9.18: Module P solves schedule module -l.

Proof: Follows immediately from Theorems 9.2, 9.7, 9.10, 9.11, 9.16, and 9.17 and the

definition of M.

9.4 Complexity Analysis

In this section, we analyze the message and time complexities of the multicast protocol. Let

system A be the composition of P and any two automata that solve schedule modules U and

N. Let a be an execution of system A. We say that a is an undeviating execution for i iff every

pair of actions try,(S) and tryi(S') either have a donei between them or S = S'. That is, in an

undeviating execution for i, ui does not "change its mind" about whether to issue a multicast

message or to whom the multicast should be sent.

214 CHAPTER 9. DISTRIBUTED SIMULATION

9.4.1 Message Complexity

There are four types of messages sent in the algorithm: req-promise, promise, adv-promise, and

multicast messages. If ui issues 7r = tryi(S) in an execution of system A, then we say that the

following messages occur as a result of 7: any requests by pi for promises from any p,,j E S,

any promises sent in response to those requests, any promise advancements by pi to pj,j E S,

and any multicast messages sent from p, to p,,j E S. That is, we charge each try, action with

those messages required to complete the corresponding multicast.

Theorem 9.19: Let a be an undeviating execution for i, where alU, contains a 7r = try,(S).

Then at most 41SI network messages occur as a result of 7r.

Proof. By Lemma 9.3, we know that for each j E S. at most one send(req-promise.i,j), one

send(promise(t),j,i) and one send(multicast(m,t'),i,j) occur between 7r and the completion

of the multicast. Now we show that at most one send(adv-promise(t"),i,j) occurs. Since the

execution is undeviating, promises are requested (and received) only from processes named in

S. Since no adv-promises are sent until promises are received from all processes named in S,

all promises are advanced at most once, to the same logical time. a

In executions that do not have the undeviating property, more messages may be required. In

the worst case, the try-set grows by one with each tryi action until I1S = n, the promise granted

by the new process each time exceeds the old try-time and is received before the next tryi, and

all promises are advanced after each promise is received. In this worst-case scenario, the number

of req-promise, promise, and multicast messages are the same as above, but the number of adv-

promise messages is O(n 2). In situations where this sort of behavior is expected, one might

choose another strdte~v for advancing promises. Alternative methods of promise advancement

are outlined in Section 9.4.3.

9.4.2 Time Complexity

To study the time complexity of the algorithm, we need a method for associating real times

with points in an execution. If a is an execution, we say that rt is a real time assignment for

a if rt maps each event 7 in a to a real time rt(r, a) such that (1) the sequence of times is

nondecreasing over the entire execution and (2) increases without bound if a is infinite. If a is

9.4. COMPLEXITY ANALYSIS 215

an execution, rt is a real time assignment for a. and ir' and 7r are events in a, we say that the

time between 7r' and 7r is Irt(7r,) - rt(7r',a). We define the state s a at real time r to be the

state s as follows: If r is less than the real time of the first event in a. then s is the initial state.

If r is greater than the time of the last event in a, then s is the last state of a. Otherwise, s is

the state occurring between the two events 7r' and 7r in a such that rt(ir',a) < r < rt(ir,a). A

more general approach for adding real time to the I/0 automaton model is presented in [50],

but the above definitions will be sufficient here.

In order to derive meaningful time bounds for the algorithm, we need to make stronger

assumptions about message delivery than the eventuality conditions used for the liveness proofs.

Therefore. we let d be an upper bound on the time between a send event and the corresponding

rcr (i.e.. the message delay). We assume that process step time is insignificant in comparison

to d. so we do not impose any lower bound on the time between two successive steps of the

algorithm. In fact. to simplify the analysis, we require that if an output action of P is enabled

in state s at time r, then either that action occurs at time r, or that action becomes disabled

by some other action occurring at time r. Informally, this says that the only delays are in the

message system; all processing of a message occurs instantaneously with the receipt of that

message. For example, no time elapses between receiving a request for a promise and sending

out the promise. We also require that each user respond to multicast-rcv and ready actions

immediately. That is, if a multicast-rrt; action occurs at real time r, then the resulting tryi or

backout action occurs at real time r. Similarly, if a readyi action occurs at real time r, then

the resulting multicast-send, occurs at real time r. We will restrict our attention to executions

of A with real time assignments satisfying the above properties.

We wish to derive an upper bound on the time between making a request to perform a

multicast (a tryi action) and getting permission to perform the multicast (a readyi action). To

accomplish this, we first compute an upper bound on the time for the process with the lowest

try-time to be able to perform a multicast once it has received all the necessary promises.

Lemma 9.20: Let a be an undeviating execution for i with real time assignment rt. Let s be

a state in a such that

1. for all j E s.tryset4, s.promises-frorj] < (oo,n), and

216 CHAPTER 9. DISTRIBUTED SIMULATION

2. for all j E I with s.region, E {T,W}, s.try-tirne, !_ s.try-time.

If r is the real time of state s, then there exists an event ir = readyi in a such that r <

rt(ir,o) < r + 3d.

Proof: For all j E 1, if s.regionj E {P,R,B} and s.promises-toi[j] < (oc,n), then by time

r + d, a rcv(multicast(m,t),j,i) action occurs for some m E S and t E T. Furthermore, for

all j E 1, if s.regionj E {T,W} and s.promises-toj] < (oc, n), then a rcv(adv-promise(t'),j, i)

action with t' > s.try.time occurs by time r + 3d (one delay for pj's promise requests, one delay

for the promise messages, and one delay for the adv-promise message). Any promise granted

by pi after state a must have a time greater than s.try-timei, since no action can occur from

region T or W to decrease the value of try-time,. Therefore, by time r + 3d, it is the case

that min(promises-toi) > s.try-time. So, all the multicast messages waiting in pendingi are

delivered by time r + 3d. Thus, the preconditions for readyi are satisfied by time r + 3d and

the action must occur. U

Let o: be an execution of P. We say that pi depends on pj in state s of a iff s.regiorn E {T,W}.

s.region., E {TW}, and s.try-time, > s.promises-toij]. We say that pi indirectly depends on Pk

in state s iff there is a sequence Pi,pj,,pj2 . ,pk such that pi depends on p.1, pj, depends on

p,,, etc. One may think of this sequence as a waiting chain, in which each process is waiting to

receive a multicast message from the next process in the chain before it may proceed with its

own multicast.

The following theorem says that if z is the length of the longest waiting chain originating

at pi in an undeviating execution and pi holds promises from all members of its try-set, then p,

must wait at most 3d(z + 1) time units before completing its multicast.

Theorem 9.21: Let a be an undeviating execution for all i E I. Suppose that at real time r,

pi is in state a such that s.promises-frorij] < (oo, n) for all j E s.try-set,. Let z be the largest

number of processes on which pi indirectly depends between state s and the next readyi. Then

a readyi occurs by time r + 3d(z + 1).

Proof. At most time 2d is required from the time a process requests promises until those

promises are received. Therefore, if a process pj depends on process pk, it must be that pj

receives a promise request from Pk within time 2d of the tryj event. (If the promise request

9.4. COMPLEXITY ANALYSIS 217

arrived later, then pj's try-time would already be fixed and pj would grant a promise for a greater

time, contradicting the hypothesis that pj depends on Pk.) So, extending this argument, the

try-times for all processes in the longest waiting chain originating at pi must be fixed by real

time r + 2dz. So. by Lemma 9.20, we know that if pi is the process in the waiting chain with the

least try-time, then a readyi action must occur by time r + 2dz + 3d, shortening the length of

the waiting chain by one. Similarly, the next process in line must issue its ready action within

3d time units, and so on. Therefore, a ready occurs by time r + 2dz + 3dz = r + 5dz.

However, one can improve on this bound by noticing that by the end of the 3d maximum time

units between the time the last process in the chain obtains all of its promises until its readyi

occurs, all the remaining proce c-s in the chain will have received any adv-promise messages

due thern. Therefore, each remaining process waits only for the multicast messages from the

processes on which it directly depends. These messages require at most d time units each, and

there are z of them in the chain. This gives us a time bound of 2dz + 3d + dz = 3d(z + 1). M

It should not be surprising that the time complexity depends heavily upon pattern of the

multicast requests, since this is what determines the dependency order. Since z can be at most

n, the delay is at most 3d(n + 1).

Note that the worst-case time complexity matches one's expectations about what must

happen when all n processes attempt to send multicast messages to every process. A simple

inductive argument shows that any protocol requires an Q(dn) delay in this worst-case scenario:

Since all processes send to all other processes, the conditions of the problem require that the

protocol enforce a total order on the multicasts. Thus, the prc'!ess u whose message is the kth

message in the total order must wait at least d(k - 1) time before sending its message, or else

it could not have received all k - 1 messages ordered before it. (This, of course, assumes that

all messages take the maximum time d to arrive.)

The worst-case scenario for an execution without the undeviating property is rather compli-

cated. Process Pl, say, grants promises to all the other processes. Then, processes P2 through

p,, each change their minds n times about their try-sets before finally performing multicasts

in turn while P, waits. On receipt of pn's multicast message, u1 changes its mind about its

try-set and issues a new try,. But before requesting the additional promises, p, first grants new

promises to all the other processes p2,... ,pn. Then p, requests promises from its new try-set

218 CHAPTER 9. DISTRIBUTED SIMULATION

and, receiving those promises, advances its try-time past all the new promises it has granted.

Thus, the same procedure can start over and repeat itself for a total of n times, since ul can

change its mind at most n times before a readyi finally occurs. This worst-case scenario results

in a delay of O(n3 d).

One interesting question is whether a deeper understanding of the time complexity of the

algorithm could be obtained by stating a measure of the concurrency inherent in the pattern

of try actions and deriving a time complexity in terms of that measure. That is. one might

measure how well the algorithm performs for a given pattern of multicast requests, and compare

this to an optimal strategy for handling that particular pattern. Ideally, an algorithm would

perform optimally for all possible request patterns. One complication in this sort of analysis is

that the behavior of the protocol itself may influence the pattern of requests.

9.4.3 Possible Optimizations

We begin with two simple optimizations. To simplify the presentation of the algorithm, we

chose to deliver only one message in a multicast-rcri action. As a minor modification, one

might wish to send a sequence of messages in each action. Also for the sake of exposition. we

chose to let pi send itself messages over the network. A real implementation, however, would

not actually send such messages but simply do some local computation.

A more significant modification would involve not waiting for promises requested from pro-

cesses not in one's try set. That is, donei would become enabled when after pi no longer holds

any promises, even if pi has requested a promise that has not yet been received. One way to

achieve this would be for pi to send out "multicast" messages to every process in requested,

regardless of whether the promise had actually been received. This modification would require

some mechanism for dealing with promises that come in late. One might keep track of the

number of earlier donei actions and tag each request with that number; that tag would be

appended to the corresponding promise by the granting process. In this way, promises arriving

from an earlier multicast attempt could be ignored.

We mentioned earlier that there are other ways in which promise advancement might be

handled. For example, one might not wish to wait until promises have been received from all

the members in the try-set before advancing promises. Alternatively, one might have a process

9.5. SUMMARY AND DISCUSSION 219

request promise advancement from those processes blocking its computation. More specifically.

the following options are possible.

1. Spontaneous advancement: This method allows pi to nondeterministically send advance-

ment messages when it notices that it is holding a promise with a time less than its

try-time.

2. Advancement on demand: If a process pj is in T with try-time = t, and has given a

promise to pi for a time t' less than t, then pj may send pi a message, asking it to advance

the promise. Upon receiving such a message, if pi has try-time > t', then it will send p.

a promise advancement message.

Deadlock avoidance methods similar to these are discussed in [49]. In both cases, there is

a trade-off between the message and time complexities: as one becomes more aggressive about

advancing promises to reduce time delays, the number of messages increases.

As a final modification, one might allow a process to make strategic promise requests from

processes not in its need-set. In this way, if ui changes its mind about its try-set, pi may not

need to wait for additional promises. Of course, requesting too many unneeded promises could

adversely affect overall performance by needlessly blocking other processes.

9.5 Summary and Discussion

We have defined the logically synchronous multicast problem and presented a solution that

takes advantage of the concurrency inherent in the problem. The strong properties of message

delivery order imposed by the problem would make a fault-tolerant solution highly attractive for

many applications. However, in a completely asynchronous with undetectable process failures,

the properties of the message delivery order are strong enough to make a fault-tolerant solu-

tion impossible. The proof of this fact is a reduction to distributed consensus using techniques

from [29]. Dolev, Dwork, and Stockmeyer show that if processes can broadcast messages such

that message delivery at all processes is consistent with some total order on the broadcasts,

then it is possible to implement a distributed consensus protocol that tolerates any number of

stopping faults [161. (Each process simply broadcasts its initial value, and the value in the first

message received is used as the decision value.) We know that there does not exist a protocol

220 CHAPTER 9. DISTRIBUTED SIMULATION

for distributed consensus that tolerates even one stopping fault [20]. Therefore, it is impossi-

ble to construct a fault-tolerant broadcast protocol in which message delivery at all processes

is consistent with a single total ordering of the broadcasts. Since the logically synchronous

multicast problem requires message delivery to be consistent with a total ordering of the mul-

ticasts (plus other conditions), it also does not admit a fault-tolerant solution. However, in

spite of this impossibility result, there do exist useful applications of the logically synchronous

multicast protocol we have presented. To conclude the chapter, we illustrate an application of

this protocol in an area where we need not be concerned with process failure. Specifically, we

consider distributed simulation of I/O automata.

The I/O automaton model has proven useful for describing algorithms and proving their

correctness (for examples, see [9, 17, 19, 23, 24, 45, 41, 46, 43, 47, 58, 591). Therefore, we have

developed a simulation system based on that model to aid in the design and understanding

of distributed algorithms. Distributing the simulation, besides being an interesting exercise in

itself, can also reduce the simulation time.

Recall from the definition of the I/O automaton model that input actions of automata are

always enabled, and that an action shared by a set S of automata is the output of only one

automaton and occurs simultaneously at all automata in S. In addition, the actions enabled in

a given state of an automaton may, in general, depend upon all previous actions occurring at

that automaton. Furthermore, the fairness condition requires that given an automaton A and

an execution a of A, if some class C E part(A) has an action enabled in a state s of a, then

either no action in C is enabled in some state s' occurring in a after s', or an action from C

occurs in a after state s.

We wish to construct a distributed system for simulating fair executions of a given au-

tomaton A, where A has some finite number of components A1,A 2,... ,A,. To simplify the

discussion, we shall assume that each component A has exactly one class in its partition. (The

generalization allowing each component to have a finite number of classes is straightforward.)

To accomplish this, we simply "plug in" a particular transition relation for each user process

ui in system A such that all of its schedules are in scheds(Ui): We assign process ui to simulate

component A,. When Ai has an action ir enabled, ui may issue a tryi(S) action, where S is

9.5. SUMMARY AND DISCUSSION 221

the set of automata having ir as an action.' Then, upon receiving a readyi input, ui issues a

multicastsend(r), where 7r is the action associated with the previous tryi. We permit ui to

issue a backouti only if no actions are enabled in Ai. The multicast-rcvi(r') input actions are

used to drive the simulation of Ai. When a multicast.rcvi(7r') action occurs, process ui updates

its state based on action r' occurring in Ai.

Given the schedule module .11 defined earlier, one can verify that this distributed simulation

satisfies the definitions of the I/O automaton model. As far as each of the components of the

simulation can tell, each action 7r occurring in the simulation happens simultaneously at every

component having r in its signature. It is interesting to see how this construction and the

liveness condition of the multicast problem work together to satisfy the fairness condition of

the I/O automaton model.

Since the logically synchronous multicast protocol is itself described as an I/O automaton, it

would be interesting to implement the distributed simulation described above by simulating the

multicast protocol in Spectrum. In order to accomplish this, the only extension needed in the

simulator itself would be the built-in "automata" for handling device I/O that we described in

Section 4.5. Specifically, one would build into the system automata that solve schedule module

N. That is, one would implement built-in automata with the same external interface as N that

would handle all communication services (opening network connections, and sending out and

receiving messages over the network) such that all the behaviors of the composition of these

built-in automata were in the set of behaviors of N. Then, the actions in the multicast protocol

that are shared with the network would simply be shared with these built-in network server

automata. The fact that these network servers make in real system calls would have no impact

on the multicast protocol itself, and the simulation could run just as described above.

Thus, there are really four logical components in this simulation. First, there is the network

algorithm, running as part of the Spectrum implementation. This interacts with the multicast

protocol that consists of multiple I/O automata distributed among several physical machines

and running in the Spectrum simulator on each machine. Also being simulated in Spectrum

is the collection of user automata that interact with the multicast protocol. And finally, there

is the algorithm of interest, which is being simulated by the collection of user automata. Of

$In a real implementation, one might have the system determine S based on r.

222 CHAPTER 9. DISTRIBUTED SIMULATION

course, if the goal is to achieve optimal performance of distributed simulation, then one might

build the entire multicast protocol and its user processes into the system rather than simulating

them as I/O automata. Then, direct distributed simulation of the algorithm of interest would

be possible, without needing to write special automata to simulate the algorithm as users of

the multicast protocol. That is, the information about which automata (in the algorithm of

interest) have output steps enabled would be available within the simulator for use in the

multicast protocol.

Although the problem described in this chapter has an application to the Spectrum Simula-

tion System, we have presented it as a general problem in a modular framework. The problem

statement, the algorithm, and the correctness proof are therefore general results, independent

of any particular system or application.

Chapter 10

Conclusion

At the beginning of this thesis, we claimed that that formal models are important not only as a

means of analyzing and proving the correctness of distributed algorithms, but also as the basis of

software tools for designing better algorithms. We presented the Spectrum Simulation System,

a new research tool for the design and study of distributed algorithms. Faithful to the I/O

automaton model, Spectrum provides the ability to integrate the entire process of distributed

algorithm development: specification, design, debugging, analysis, and proof of correctness. All

of this is accomplished within a single formal framework that is natural for describing a wide

range of distributed algorithms.

In the early chapters of this thesis, we presented the Spectrum programming language,

simulator, and user interface some detail. Then, drawing on related work and our experience

using the Spectrum system, we conducted an evaluation of Spectrum in terms of the design

goals stated in Chapter 1. In the course of our evaluation, we described a number of possible

directions for further work. We explored some of these directions in the latter part of the

thesis (shared memory, superposition, and distributed simulation), but many others remain.

We conclude the thesis by reviewing two of the more important of these directions.

There is a need for software tools that help us to design and test distributed algorithms in

parallel with constructing their correctness proofs. The Spectators and INVARIANT clauses of

Spectrum are a start in this direction, especially when superposition is used in conjunction with

the INVARIANT clause to check invariants on the global state of the system. Adding user-

defined scheduling capability to Spectrum's list of options would be of some help in constructing

223

224 CHAPTER 10. CONCLUSION

"strange" algorithm executions for more rigorous testing. But a particularly fruitful line of

research might be to study various proof techniques as the basis of algorithm development

tools. When algorithms are developed as refinements of more abstract algorithms, it is often

convenient to use mapping proofs to show that the refined algorithm simulates the abstract one.

(For examples, see [37], [47], and [3].) Algorithm development tools based on these techniques

would be quite useful. For example, one might specify a state mapping and simulate both the

refined and the abstract algorithm, mechanically checking at each step of the refined algorithm

that there is a corresponding sequence of steps of the higher level algorithm consistent with

the given state mapping. The interesting question here is how to accommodate multivalued

state mappings and nondeterministic algorithms. Another potential line of research would

be to integrate a simulation system like Spectrum with a theorem prover like LP [21, 221

or Isabelle [52] by providing mechanical translation between the Spectrum language and the

specification language of the theorem prover. In this way, one could write algorithms as I/O

automata, debug them with the help of Spectators or other tools based on proof techniques,

and then use a theorem prover to generate the correctness proof.

Another important research area is to provide tools that help provide insight into algorithm

efficiency. This means understanding not only worst case time and message complexity, but

also expected or average case performance. Using spectators, one can statistically analyze the

message complexity of an algorithm. And visualization tools provided by Spectrum can help,

for example, to see the level of resource contention or network congestion in an execution.

However, it is difficult to study time complexity in Spectrum. Several researchers have already

extended the I/0 automaton model for the study of real-time systems, and have used the

extended model to construct timing-based proofs for distributed algorithms [2, 3, 42, 50]. Their

work could form the basis of useful extensions to the Spectrum system. Using their approach,

timing information in Spectrum would not be manipulated explicitly by the algorithm being

simulated, but timing constraints would be associated with automaton classes and handled

automatically by the system. This approach would be in keeping with the separation of logical

concerns that is seen throughout the Spectrum design.

As the proliferation of distributed systems continues and our demands for performance and

reliability increase, we will be need to find new ways to cope with increasingly complicated

225

distributed algorithms. The more thoroughly we can integrate formal methods and algorithm

development tools, the more likely we are to produce distributed algorithms that are both

efficient and correct.

226 CHAPTER 10. CONCLUSION

Appendix A

Language Syntax

A grammar defining the syntax for a Spectrum types file follows. Items in boldface are

variable symbols, items in typewriter font are terminal symbols, items in italics in angle

brackets (<>) are name declarations, items in italics (without angle brackets) are uses of

declared names. Items in square braces ([]) are optional. When several of the same item are

permitted, ellipses (...) are used. The percent symbol (%) is the comment marker; the parser

ignores all characters from a % to the end of that line. Comments about the grammar rules

are surrounded by asterisks (*).

types file [typedef...] actiondef... autdef...

type type-name I

boolean

integer

automaton-id I

string I

tuple (field,...) I
set (type) I

multiset (type) I
mapping (type, type) [

sequence (type)

field <field-name>: type

227

228 APPENDIX A. LANGUAGE SYNTAX

typedef DATA <type-name> type

* recursive type defs not allowed *

actiondef ACTION <action-name> type

autdef AUTOMATON <aut-name> STATE type inv maint [input...] [class...]

inv INVARIANT expression...

* each expression returns a boolean, modifies nothing, doesn't read action arguments *

maint ::= MAINTAIN expression...

* each expression modifies only state, doesn't read action arguments *

input INPUT action-name [where] effect

class CLASS [param...] [WEIGHT intvalue] output...

param <class-param> :expression

* expression refers only to configuration data, param-name takes on the type of the expression *

output OUTPUT action-name [where] [pre] [select] [effect)

pre PRE expression...

* each expression returns a boolean, modifies nothing, doesn't read action arguments *

select ::= SEL expression...

* each expression modifies only action arguments, reads anything *

effect ::= EFF expression...

* each expression modifies only state, reads aniything +

where ::= WHERE expression...

* expressions are of type boolean, modify nothing, do not refer to state *

expression constant I
variable

function([expression,...]) I
{ expression... } I
expression. field-name

* for the last option, expression must be a tuple and field-name must be in that tuple *

variable s a I c
* state, action argument, or class parameter *

component .field-name

229

* must be a field in the tuple *

constant intvalue

"alphanumeric..."I

boolvalue

alphanumeric::= letter I numeral

intvalue [-]numeral...

letter : albcldelf lglhliljlklllmlnlolplqlrlsltlulvlwlxlylzI

AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

numeral 0 111213141S16171819

boolean true I false

function any function listed in Appendix B

230 APPENDIX A. LANGUAGE SYNTAX

Appendix B

Functions

The types of arguments and return values for each function are shown. T, Ti. and T2 may

be arbitrary types. A function is does not return a result or modify an argument unless it is

explicitly stated otherwise.

B.1 Generic

The following functions apply to all data types.

* eq(a:T, b:T) returns BOOLEAN
returns TRUE if a = b, FALSE otherwise

* less(a:T, b:T) returns BOOLEAN
returns TRUE if a < b, FALSE otherwise

" iess.eq(a:T, b:T) returns BOOLEAN
returns TRUE if a <= b, FALSE otherwise

" greater(a:T, b:T) returns BOOLEAN
returns TRUE if a > b, FALSE otherwise

" greater.eq(a:T, b:T) returns BOOLEAN
returns TRUE if a >= b, FALSE otherwise

" assign(a:T, b:T) modifies a
copies the value of b into variable a

231

232 APPENDIX B. FUNCTIONS

B.2 Integers

* int-.neg(a:INTEGER) returns INTEGER
returns -a

* int-plus(a:INTEGER, b:INTEGER) returns INTEGER
returns a+b

* int-.minus(a:INTEGER, b:INTEGER) returns INTEGER
returns a-b

* int-.times(a:INTEGER, b:INTEGER) returns INTEGER
returns axb

* int..div(a:INTEGER, b:INTEGER) returns INTEGER
returns a-,b, truncated if not evenly divisible

* int-mod(a:INTEGER, b:INTEGPR) returns INTEGER
returns a mod b

* ixit.random(a:INTEGER, b:INTEGER) returns INTEGER
returns a random integer in the range [a,b)

B.3 Booleans

* bool-not(a:BOO LEAN) returns BOOLEAN
returns -~a

a boolimplies(a:BOOLEAN, b:BOOLEAN) returns BOOLEAN
returns a--eb

* bool-and(a:BOOLEAN, b:BOOLEAN) returns BOOLEAN
returns aAb

* bool-or(a:BOO LEAN, b:BOOLEAN) returns BOOLEAN
returns avb

* booL-xor(a:BOOLEAN, b:BOOLEAN) returns BOOLEAN
returns aeb

B.4. STRINGS 233

B.4 Strings

* str.to-int(a:STRING) returns INTEGER
converts the (base 10) digits of a into an integer
if a doesn't begin with digits, 0 is returned

B.5 Configuration Data

* self() return AUTOMATONJD
returns the automaton's unique id assigned by the system

* name(a:AUTOMATONJD) returns STRING
returns the name assigned to the automaton with id = a

" parent(a:AUTOMATONJD) returns AUTOMATONJD
returns the id of a's direct parent in the composition heirarchy

" in(a:AUTOMATONJD) returns SET(AUTOMATONJD)
the return set contains b iff there is an edge from b to a

" out(a:A UTO MATO NJD) returns SET(AU TOMATONID)
the return set contains b iff there is an edge from a to b

" neighbors(a:AUTOMATONJD) returns SET(AUTOMATONJD)
the return set contains b iff b shares an edge with a

" all-of-type(a:STRING) returns SET(AUTOMATO NJD)
returns the ids of all instances of the automaton type named a

" edge-rev(a:AUTOMATONiD, b:AUTOMATONJD) modifies configuration
reverses the direction of the edge from a to b

" edge-val(a:AUTOMATONJD, b:AUTOMATONJD, c:INTEGER) modifies configuration
makes c the "value" (color) of the edge from a to b

In the current implementation of Spectrum, the configuration is intended to be static. The

last two functions above are provided for visualization purposes only, and should be used with

caution. For example, if edge-rev is used in program, then the signatures of the automata

should not depend on the direction of their adjacent edges; otherwise, the signatures would

change during the course of the execution. Also, users should be sure that the named edges

actually exist in the configuration. One should especially avoid having multiple automata

modify a given edge during the same step. Since the configuration is considered static, the

simulator does not restore the configuration on starting a new simulation nor after undoing

234 APPENDIX B. FUNCTIONS

a portion of an execution. An interesting possibility for further work would be to extend the

system to support a dynamic configuration, including the dynamic creation (and destruction)

automaton instances.

B.6 Sets

" set-init(a:SET) modifies a
initializes a to the empty set

" set.single(a:T) returns SET(T)
returns the set {a}

" set.empty(a:SET) returns BOOLEAN
returns TRUE iff the set a is empty

" set.size(a:SET) returns INTEGER
returns the number of elements in a

" set.el(a:SET(T), b:T) returns BOOLEAN
returns TRUE iff bEa

" setinsert(a:SET(T), b:T) modifies a
inserts b into set a

" set.delete(a:SET(T), b:T) modifies a
deletes b from set a

" set.minimum(a:SET(T)) returns T
returns the smallest element of a

" set-maximum(a:SET(T)) returns T
returns the largest element of a

" set-random(a:SET(T)) returns T
returns a random element of a

" set.union(a:SET(T), b:SET(T)) returns SET(T)
returns aUb

" set.diff(a:SET(T), b:SET(T)) returns SET(T)
returns a\b

" set-int(a:SET(T), b:SET(T)) returns SET(T)
returns anb

" set.forall(x,a:SET(T),expression:BOOLEAN) returns BOOLEAN
x is automaticaly declared to be of type T
the expression may involve x
returns TRUE iff the expression is TRUE for all elements x of a

B.7. MULTISETS 235

" set-exists(x,a:SET(T),expression:BOOLEAN) returns BOOLEAN
x is automatically declared to be of type T
the expression may involve x
returns TRUE iff the expression is TRUE for some element x of a

" set doall(x,a:SET(T),expression) returns BOOLEAN
x is automatically declared to be of type T
the expression may involve x
executes the expression for each element of a

" set..find(x,a:SET(T),expression:BOOLEAN) returns T
x is automatically declared to be of type T
the expression may involve x
returns an element of a that makes the expression TRUE

* set.findall(x.a:SET(T),expression:BO OLEAN) returns SET(T)
x is automatically declared to be of type T
the expression may involve x
returns the set of all elements of a that make the expression TRUE

B.7 Multisets

" msetinit(a:MULTISET) modifies a
initializes a to the empty multiset

" mset.single(a:T) returns MUTLISET(T)
returns the multiset {a}

* mset-empty(a:MULTISET) returns BOOLEAN
returns TRUE iff the multiset a is empty

" mset-size(a:MULTISET) returns INTEGER
returns the number of elements in a

" mset.el(a:MULTISET(T), b:T) returns BOOLEAN
returns TRUE iff bEa

" mset-insert(a:MULTISET(T), b:T) modifies a
inserts b into multiset a

" mset-delete(a:MULTISET(T), b:T) modifies a
deletes one occurrence of b from multiset a

" mset-minimum(a:MULTISET(T)) returns T
returns the smallest element of a

" mset._maximum(a:MULTISET(T)) returns T
returns the largest element of a

236 APPENDIX B. FUNCTIONS

* mset..random(a:MULTISET(T)) returns T
returns a random element from the multiset a

" mset-union(a:MULTISET(T), b:MNULTISET(T)) returns MULTISET(T)
returns allb (multiset union)

* mset-.diff(a:MULTISET(T), b:ML'LTISET(T)) returns 'MULTISET(T)
returns a\b (multiset difference)

" mset-int(a:MIJLTISET(T), b:MULTISET(T)) returns MULTISET(T)
returns aflb (multiset intersection)

B.8 Sequences

o seq-init(a:SEQUENCE) modifies a
initializes a to the empty sequence

o seq..empty(a:SEQUENCE) returns BOOLEAN
returns TRUE iff the sequence a is empty

o seq..size(a:SEQUENCE) returns INTEGER
returns the length of the sequence a

o seq..el(a:SEQUENCE(T), b:T) returns BOOLEAN
returns TRU E iff b occurs in a

* seq..back(a:SEQUENCE(T)) returns T
returns the element at the back of a

o seqlfront(a:SEQUENCE(T)) returns T
returns the element at the front of a

o seq..addb(a:SEQUENCE(T), b:T) modifies a
inserts b into squence a at the back

o seq..addf(a:SEQUENCE(T), b:T) modifies a
inserts b into squence a at the front

o seq.Ael(a:SEQUENCE(T), b:T) modifies a
deletes some occurrence of b from sequence a

* seq..4elb(a:SEQUENCE(T)) returns T modifier, a
deletes and returns the element at the back of a

o seq..delf(a:SEQTJENCE(T)) returns T modifies a
deletes and returns the element at the front of a

o seq-random(a:SEQUENCE(T)) returns T
returns a random element of a

B.9. MAPPINGS 237

B.9 Mappings

" roapinit(a:MIAPPING(Tl,T2).h:T2)
creates a mapping where a(x) =b for all x

" map(a:M1APPING(T1,T2), b:T1, c:T2) modifies a
makes a(b) =c

" map-eval(a:MAP PING (T1,T2), b:T1) returns T2
returns a(b)

B.10 Conditionals

* ifthen(expressionl1:BOOL EAN, expression2)
if expression 1 evaluates to TRUE, expression2 is executed

* ifthenelse(expressionl1:B OOLEA N, expression2, expression 3)
if expressioni evaluates to TRUE, expression2 is executed
else expression3 is executed

238 APPENDIX B. FUNCTIONS

Bibliography

[1] Ada Programming Language. Technical Report ANSI/MIL-STD-1815A-1983, Department

of Defense.

[2] Hagit Attiya and Nancy Lynch. Time bounds for real-time process control in the presence

of timing uncertainty. In Proceedings of the 10th Real Time Systems Symposium, December

1989.

[3] Hagit Attiya and Nancy Lynch. Using mappings to prove timing properties. In Proceedings

of the 9th ACM Symposium on Principles of Distributed Computing, August 1990. To

appear.

[4] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM,

32(4):804-823, October 1985.

[51 R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with action systems. ACM

Transactions on Programming Languages and Systems, 10(4):513-554, 1988.

[6] Rajive Bagrodia. On the design of high performance distributed systems. 1987. Ph.D.

dissertation, University of Texas, Austin.

[7] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of

failures. ACM Transactions on Computer Systems, 5(1):47-76, February 1987.

[8] Andrew Birrell, John Guttag, Jim Homing, and Roy Levin. Synchronization Primitives

for a Multiprocessor. A Formal Specification. Technical Report 20, Digital Equipment

Corporation Stanford Research Center, August 1987.

239

240 BIBLIOGRAPHY

[9] Bard Bloom. Constructing two-writer atomic registers. IEEE Transactions on Computing,

Special Issue on Parallel and Distributed Algorithms, 37(12):1506-1514, December 1988.

Also in 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

Vancouver, British Columbia, Canada, August, 1987, pp. 249-259.

[10) Marc H. Brown. Algorithm Animation. Technical Report CS-87-05, Ph.D. Thesis, Brown

University, Providence, RI, April 1987.

[11] M.H. Brown and R. Sedgewick. A system for algorithm animation. Computer Graphics,

18(3):177-186, July 1986.

[12] G. N. Buckley and A. Silberschatz. An effective implementation for the generalized input-

output construct of CSP. ACM Transactions on Programming Languages and Systems,

5(2):223-235, April 1983.

[13] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of

distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

[14] K. Mani Chandy and Jayadev Misra. A Foundation of Parallel Program Design. Addison-

Wesley, Reading, MA, 1988.

[15] E.W. Dijkstra. Solutions of a problem in concurrent programming control. Communica-

tions of the A CM, 8(9):569, September 1965.

[16] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed

for distributed consensus. Journal of the ACM, 34(1):77-97, January 1987.

[17] A. Fekete and N. Lynch. The need for headers: an impossibility result for communication

over unreliable channels. Also, Technical Memo MIT/LCS/TM-428, MIT Laboratory for

Computer Science, May, 1990. To appear in CONCUR. 1990.

[18] A. Fekete, N. Lynch, Y. Mansour, and J Spinelli. The Data Link Layer: The Impossi-

bility of Implementation in Face of Crashes. Technical Memo MIT/LCS/TM-355.b, MIT

Laboratory for Computer Science, August 1989. Submitted for publication.

BIBLIOGRAPHY 241

[19] Alan Fekete, Nancy Lynch, and Liuba Shrira. A modular proof of correctness for a network

synchronizer. In The 2nd International Workshop on Distributed Algorithms, July 1987.

Amsterdam, The Netherlands.

[20] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the AC.M. 32(2):374-382, April 1985.

[21] S. J. Garland and J. V. Guttag. An overview of LP. the Larch prover. In Proceedings of the

Third International Conference on Rewriting Techniques and Applications. pages 137-151,

April 1989. Lecture Notes in Computer Science 355, Springer-Verlag.

[22] S. J. Garland, J. V. Guttag, and J. J. Horning. Debugging Larch shared language specifi-

catior.s. IEEE Transactions on Software Engineering, October 1990. To appear.

[23] Kenneth Goidman and Nancy Lynch. Modelling shared state in a shared action model.

In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science. June

1990.

[241 Kenneth J. Goldman and Nancy A. Lynch. Quorum consensus in nesteu transaction

systems. In Proceedings of the 6th A CM SIGA CT-SIGOPS Symposium on Principles of

Distributed Computing, pages 27-41, August 1987. A full version is available as MIT

Technical Report MIT/LCS/TR-390.

[25) Aparna M. Gupta. I/O automaton based simulation of selected distributed algorithms.

June 1990. Senior Thesis, MIT Laboratory for Computer Science.

[26] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtul-Trauring,

and M. Trakhtenbrot. Statemate: a working environment for the development of complex

reactive systems. IEEE Transactions on Software Engineering, April 1990.

[27] David Harel. On Visual Formalisms. Technical Report CMU-CS-87-126, Carnegie Mellon

Computer Science Department, June 1987.

[28j David Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming, 8(3):231-274, June 1987.

242 BIBLIOGRAPHY

[29] Maurice Herlihy. Impossibility and universality results for wait-free synchronization. In

Proceedings of the 7th A CM SIGA CT-SIGOPS Symposium on Principles of Distributed

Computing, pages 276-290, August 1988. A full version is available as MIT Technical

Report MIT/LCS/TR-390.

[30] Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects. In Proceedings

of the 14th Principles of Programming Languages, pages 13-26, January 1987. Also to

appear in Transactions on Programming Languages and Systems.

[31] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Engle-

wood Cliffs, New Jersey, 1985.

[32] INMOS. Transputer reference manual and product data. September 1985. INMOS Limited.

[331 T.A. Joseph and K.P. Birman. Reliable broadcast protocols. In Mullender, editor, An

Advanced Course on Distributed Computing, chapter 14, ACM Press, 1989.

[34] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall,

Englewood Cliffs, NJ. 1988.

[35] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE Transactions on Computers, 28(9):690, September 1979.

[36] Leslie Lamport. On interprocess communication. Distributed Computing, 1(1):77-85,86-

101, 1986.

[37] Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Program-

ming Languages and Systems, 5(2):190-222, April 1983.

[381 Leslie Lamport. Time, docks, and the ordering of events in a distributed system. Com-

munications of the ACM, 27(7):558-565, July 1978.

[391 G. LeLann. Distributed systems - towards a formal approach. In Information Processing

77 (IFIP), pages 155-160, North Holland Publishing Co., Amsterdam, Toronto, 1977.

[40] John Leo. Dynamic process creation in a static model. May 1990. M.S. Thesis, MIT

Laboratory for Computer Science.

BIBLIOGRAPHY 243

[41) N. Lynch and M. Merritt. Introduction to the theory of nested transactions. In Interna-

tional Conference on Database Theory, pages 278-305. Rome. Italy, September 1986. Also.

expanded version in Technical Report, MIT/LCS/TR-367, MIT Laboratory for Computer

Science, July 1986. Revised version in Theoretical Computer Science, 62(1988):123-185.

[42] Nancy Lynch. Modelling real-time systems. In Foundations of Real-Time Computing

Research Initiative, pages 1-16, November 1988. ONR Kickoff Workshop.

[43) Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions. In

progress.

[44] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and implementation

of a distributed system. Theoretical Computer Science, 13:17-43, 1981.

[45) Nancy A. Lynch and Kenneth J. Goldman. Distributed Algorithms. Technical Re-

port MIT/LCS/RSS-5, MIT Laboratory for Computer Science, May 1989. MIT Research

Seminar Series.

[46] Nancy A. Lynch, Yishay Mansour, and Alan Fekete. Data link layer: two impossibility

results. In Proceedings of the 7th ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pages 149-170, August 1988.

[47] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed al-

gorithms. In Proceedings of the 6th ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pages 137-151, August 1987. A full version is available as MIT

Technical Report MIT/LCS/TR-387.

[48] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI.

Quarterly, 2(3), 1989.

[49] Jayadev Misra. Distributed discrete-event simulation. Computing Surveys, 1(18):39-65,

1986.

[50] Francesmary Modugno, Michael Merritt, and Mark R. Tuttle. Time constrained automata.

November 1988. Unpublished manuscript.

244 BIBLIOGRAPHY

[51] Magda F. Nour. An Automata-Theoretic Model for Unity. Technical Re-

por'. MIT/LCS/T*I-400, MIT Laboratory for Computer Science, June 1989. Senior Thesis.

[52] L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Rea-

soning, 5:363-397, 1989.

[53] Dick Pountain. A Tutorial Introduction to Occam Programming. INMOS, Limited, March

1986.

[54) Gruia-Catalin Roman and Kenneth C. Cox. A declarative approach to visualizing concur-

rent computations. IEEE Computer, 22(10):25-36, October 1989.

[55] Gruia-Catalin Roman, Michael E. Ehlers, H. Conrad Cunningham. and R. Howard Lykins.

Toward comprehensive specification of distributed systems. In In Proceedings of the 7th

International Conference on Distributed Computing Systems, pages 282-289, September

1987.

[56] Robert NN. Scheifler and Jim Gettys. The X Window System. Technical Re-

port MIT/LCS/TR-368,. MIT Laboratory for Computer Science, October 1986.

[57] Fred B. Schneider. Synchronization in distributed programs. ACM Transactions on Pro-

gramming Languages and Systems, 2(4):179-195, 1982.

[58] Jennifer Welch, Leslie Lamport, and Nancy Lynch. A lattice-structured proof of a minimum

spanning tree algorithm. In Proceedings of the 7th ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, pages 28-43, August 1988.

[59] Jennifer L. Welch and Nancy A. Lynch. Synthesis of Efficient Drinking Philosophers

Algorithms. Technical Report MIT/LCS/TM-417, MIT Laboratory for Computer Science,

November 1989. Submitted for publication.

[60] Bernard P. Zeigler. Hierarchical, modular discrete-event modelling in an object-oriented

environment. Simulation, 49(5):219-230, 1987.

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INTORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Atm: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

